Skip to main content
Log in

Three-dimensional graphene network supported by poly phenylene sulfide with negative permittivity at radio-frequency

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Percolative composites with negative permittivity can be promising candidates for metamaterials, but there is still a need about efficient method to adjust the permittivity value. Here graphene/poly phenylene sulfide composites were prepared and the dielectric property was studied. By gradually increasing the graphene content, three-dimensional conductive network could be constructed, accompanied by a change in the conductive mechanism from hopping conduction to metal-like conduction. Negative permittivity was achieved, and the Drude model indicated that negative permittivity came from the plasma oscillation in graphene network. The equivalent circuit analysis demonstrated that interconnection of graphene was the most crucial factor to adjust the negative permittivity value. That is, negative permittivity value can be effectively adjusted by graphene content. These findings may pave a way to simply and efficiently control negative permittivity and imply promising applications in modern electrical and electronic industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. A.J. Haes, L. Chang, W.L. Klein, P.V.D. Richard, J. Am. Chem. Soc. 127(7), 2264–2271 (2005)

    Article  CAS  Google Scholar 

  2. T.Y. Kim, M.A. Badsha, J. Yoon, S.Y. Lee, Y.C. Jun, C.K. Hwangbo, Sci. Rep. 6, 22941 (2016)

    Article  CAS  Google Scholar 

  3. D. Turnbull, H. Ehrenreich, Solid State Physics (Academic Press, New York, 1991)

    Google Scholar 

  4. W.Andrew Murray, W.L. Barnes, Adv. Mater. 19, 3771–3782 (2007)

    Article  CAS  Google Scholar 

  5. R.A. Shelby, D.R. Smith, S. Schultz, Science 292(5514), 77–79 (2001)

    Article  CAS  Google Scholar 

  6. C.M. Soukoulis, J. Zhou, T. Koschny, M. Kafesaki, E.N. Economou, J. Phys. Condens. Mater. 20(30), 304217 (2008)

    Article  Google Scholar 

  7. D.R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemat-Nasser, S. Schultz, Phys. Rev. Lett. 84(18), 4184 (2000)

    Article  CAS  Google Scholar 

  8. C. Enkrich, M. Wegener, S. Linden, S. Burger et al., Phys. Rev. Lett. 95(20), 203901 (2005)

    Article  CAS  Google Scholar 

  9. G. Dolling, C. Enkrich, M. Wegener, J.F. Zhou, C.M. Soukoulis, S. Linden, Opt. Lett. 30(23), 3198–3200 (2005)

    Article  CAS  Google Scholar 

  10. G. Dolling, M. Wegener, C.M. Soukoulis, S. Linden, Opt. Lett. 32(1), 53–55 (2007)

    Article  CAS  Google Scholar 

  11. P. Xie, Z. Wang, Z. Zhang, R. Fan, C. Cheng et al., J. Mater. Chem. C 6, 5239–5249 (2018)

    Article  CAS  Google Scholar 

  12. P. Xie, W. Sun, Y. Liu, A. Du, Z. Zhang, G. Wu, R. Fan 129, 598–606 (2018)

    CAS  Google Scholar 

  13. P. Xie, Z. Zhang, K. Liu, L. Qian, F. Dang, Y. Liu, R. Fan, X. Wang, S. Dou, Carbon 125, 1–8 (2017)

    Article  CAS  Google Scholar 

  14. X. Yao, X. Kou, J. Qiu, Carbon 107, 261–267 (2016)

    Article  CAS  Google Scholar 

  15. B. Li, G. Sui, W. Zhong, Adv. Mater. 21, 4176–4180 (2009)

    Article  CAS  Google Scholar 

  16. P. Xie, Z. Wang, K. Sun, C. Cheng, Y. Liu, R. Fan, Appl. Phys. Lett. 111, 112903 (2017)

    Article  Google Scholar 

  17. Z. Shi, J. Wang, F. Mao, C. Yang, C. Zhang, R. Fan, J. Mater. Chem. A 5, 14575 (2017)

    Article  CAS  Google Scholar 

  18. J. Wang, Z. Shi, F. Mao, S. Chen, X. Wang, ACS Appl. Mater. Interfaces 9(2), 1793–1800 (2017)

    Article  CAS  Google Scholar 

  19. P. Xie, B. He, F. Dang, J. Lin, R. Fan et al., J. Mater. Chem. C. 2018. https://doi.org/10.1039/C8TC02127A

    Article  Google Scholar 

  20. S. Qiu, H. Lyu, J. Liu, Y. Liu, N. Wu, W. Liu, ACS Appl. Mater. Inter. 8, 20258–20266 (2016)

    Article  CAS  Google Scholar 

  21. M. Han, X. Yin, X. Li, B. Anasori, L. Zhang, L. Cheng, Y. Gogotsi, ACS Appl. Mater. Interfaces 9, 20038–20045 (2017)

    Article  CAS  Google Scholar 

  22. M. Han, X. Yin, H. Wu, Z. Hou, C. Song et al., ACS Appl. Mater. Interfaces 8, 21011–21019 (2016)

    Article  CAS  Google Scholar 

  23. R. Nair, P. Blake, A. Grigorenko et al., Science 320(5881), 1308–1308 (2008)

    Article  CAS  Google Scholar 

  24. W. Sun, A. Du, B. Zhou et al., J. Sol Gel Sci. Technol. 80(1), 68–76 (2016)

    Article  CAS  Google Scholar 

  25. H. Massango, T. Tsutaoka, T. Kasagi, S. Yamamoto, K. Hatakeyama, J. Appl. Phys. 121, 103902 (2017)

    Article  Google Scholar 

  26. T. Tsutaoka, H. Massango, T. Kasagi, S. Yamamoto, K. Hatakeyama, Appl. Phys. Lett. 108, 191904 (2016)

    Article  Google Scholar 

  27. M. Han, X. Yin, S. Ren, W. Duan, L. Zhang, L. Cheng, RSC Adv. 6, 6467–6474 (2016)

    Article  CAS  Google Scholar 

  28. W. Sun, G. Gao, Y. Du et al., J. Mater. Chem. A 6, 9938–9947 (2018)

    Article  CAS  Google Scholar 

  29. W. Sun, G. Gao, K. Zhang et al., Carbon 132, 667–677 (2018)

    Article  CAS  Google Scholar 

  30. C. Cheng, R. Fan, Z. Wang, Q. Shao, X. Guo et al., Carbon 125, 103–112 (2017)

    Article  CAS  Google Scholar 

  31. C. Cheng, R. Fan, L. Qian, X. Wang, L. Dong, Y. Yin, RSC Adv. 6, 87153–87158 (2016)

    Article  CAS  Google Scholar 

  32. P. Xie, K. Sun, Z. Wang, Y. Liu, R. Fan, Z. Zhang, G. Schumacher, J. Alloy Compd. 725, 1259–1263 (2017)

    Article  CAS  Google Scholar 

  33. P. Xie, R. Fan, Z. Zhang, B. Li, M. Chen, Y. Liu, J. Mater. Sci. 29(7), 6119–6124 (2018)

    CAS  Google Scholar 

  34. C. Cheng, R. Fan, Y. Ren, T. Ding, L. Qian, J. Guo et al., Nanoscale 9, 5779–5787 (2017)

    Article  CAS  Google Scholar 

  35. C. Zhang, Z. Shi, F. Mao et al., ACS Appl. Mater. Interfaces 10(31), 26713–26722 (2018)

    Article  CAS  Google Scholar 

  36. C. Yang, Z. Shi, C. Zhang et al., Mater. Lett. 231, 87–90 (2018)

    Article  CAS  Google Scholar 

  37. C. Zhang, Z. Shi, F. Mao et al., J. Mater. Sci. 53(18), 13230–13242 (2018)

    Article  CAS  Google Scholar 

  38. Z. Shi, R. Fan, X. Wang, Z. Zhang, L. Qian, L. Yin, Y. Bai, J. Eur. Ceram. Soc. 35(4), 1219–1225 (2015)

    Article  CAS  Google Scholar 

  39. Z. Shi, S. Chen, R. Fan, X. Wang, X. Wang, Z. Zhang, K. Sun, J. Mater. Chem. C 2, 6752 (2014)

    Article  CAS  Google Scholar 

  40. K. Sun, R. Fan, Y. Yin, J. Guo, X. Li, Y. Lei, L. An, C. Cheng, Z. Guo, J. Phys. Chem. C 121, 7564–7571 (2017)

    Article  CAS  Google Scholar 

  41. K. Sun, P. Xie, Z. Wang, T. Su, Q. Shao, J. Ryu, X. Zhang et al., Polymer 125, 50–57 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of the National Natural Science Foundation of China [Grant Nos. 51803119, 51871146 and U1832136].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peitao Xie, Zidong Zhang or Jiehua Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, D., Xie, P., Fan, G. et al. Three-dimensional graphene network supported by poly phenylene sulfide with negative permittivity at radio-frequency. J Mater Sci: Mater Electron 29, 20768–20774 (2018). https://doi.org/10.1007/s10854-018-0218-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-0218-3

Navigation