Skip to main content
Log in

Effect of gamma-ray irradiation on microstructure and mechanical property of Sn63Pb37 solder joints

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In order to meet the reliability requirement of solder joints for future small satellite, the effect of γ-ray irradiation on the microstructure and mechanical property of Sn63Pb37 solder joints was investigated by scanning electron microscope observation and mechanical testing. The results showed that γ-ray irradiation possessed few influence on the thickness and morphology of intermetallic compound layer of Sn63Pb37/Cu. But the mechanical properties of solder joints were reduced with micro-voids and micro-cracks appearing in Pb-based solid solution during irradiation process. Energetic electrons created by γ-ray through Compton Effect, generated dislocated atoms which eventually resulted in the formation of microscopic defects and the decrement of mechanical property. After 960 h γ-ray irradiation at the dose rate of 0.25 Gy(Si)/s, the shear force of Sn63Pb37 solder joints was decreased by 11.47%. Compared with as-soldered joint, the ductility of irradiated solder joints was reduced with more unobvious shear dimples and lower impact toughness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. J.H. Hoffman, R.C. Chaney, H. Hammack, J. Am. Soc. Mass Spectrom. 19, 1377 (2008)

    Article  CAS  Google Scholar 

  2. Y. Guo, R.W. Farquhar, Space Sci. Rev. 140, 49 (2008)

    Article  Google Scholar 

  3. S. Matousek, Acta Astronaut. 61, 932 (2007)

    Article  Google Scholar 

  4. M. Tafazoli, Acta Astronaut. 64, 195 (2009)

    Article  Google Scholar 

  5. A. Drews, A.C. de Keizer, H.G. Beyer, E. Lorenz, J. Betcke, W.G.J.H.M. van Sark, W. Heydenreich, E. Wiemken, S. Stettler, P. Toggweiler, S. Bofinger, M. Schneider, G. Heilscher, D. Heinemann, Sol. Energy 81, 548 (2007)

    Article  Google Scholar 

  6. C. Hajiyev, D. Cilden Guler, Prog. Aerosp. Sci. 90, 54 (2017)

    Article  Google Scholar 

  7. R. Sandau, K. Brieß, M. D’Errico, ISPRS J. Photogramm. Remote Sens 65, 492 (2010)

    Article  Google Scholar 

  8. R. Sandau, Acta Astronaut. 66, 1 (2010)

    Article  Google Scholar 

  9. S. Yin, B. Xiao, S.X. Ding, D. Zhou, IEEE Trans. Industr. Electron. 63, 3311 (2016)

    Article  Google Scholar 

  10. L. Fajun, L. Ziyuan, T. Liying, Z. Yanping, M. Jing, L. Mykhaylo, F. Lan, T.H. Hoe, J. Chennupati, Nanotechnology 28, 125702 (2017)

    Article  Google Scholar 

  11. S. Girard, M. Vivona, A. Laurent, B. Cadier, C. Marcandella, T. Robin, E. Pinsard, A. Boukenter, Y. Ouerdane, Opt. Express 20, 8457 (2012)

    Article  CAS  Google Scholar 

  12. V. Goiffon, F. Corbière, S. Rolando, M. Estribeau, P. Magnan, B. Avon, J. Baer, M. Gaillardin, R. Molina, P. Paillet, S. Girard, A. Chabane, P. Cervantes, C. Marcandella, IEEE Trans. Nucl. Sci. 62, 2956 (2015)

    Article  CAS  Google Scholar 

  13. D.J. Barnhart, T. Vladimirova, M.N. Sweeting, K.S. Stevens, IEEE J. Solid-State Circuits 44, 1617 (2009)

    Article  Google Scholar 

  14. P. Xue, S. Xue, Y. Shen, H. Zhu, J. Mater. Sci. Mater. Electron. 25, 2671 (2014)

    Article  CAS  Google Scholar 

  15. N.-S. Liu, K.-L. Lin, J. Alloys Compd. 456, 466 (2008)

    Article  CAS  Google Scholar 

  16. S. Liu, S. Xue, J. Mater. Sci. Mater. Electron. 26, 9424 (2015)

    Article  CAS  Google Scholar 

  17. Y.-W. Chang, Y. Cheng, F. Xu, L. Helfen, T. Tian, M. Di Michiel, C. Chen, K.-N. Tu, T. Baumbach, Acta Mater. 117, 100 (2016)

    Article  CAS  Google Scholar 

  18. A.K. Gain, L. Zhang, M.Z. Quadir, Mater. Des. 110, 275 (2016)

    Article  CAS  Google Scholar 

  19. L. Zhang, L. Sun, Y.-H. Guo, C.-W. He, J. Mater. Sci. Mater. Electron. 25, 1209(2014)

    Article  Google Scholar 

  20. K.N. Tu, K. Zeng, Mater. Sci. Eng. 34, 1 (2001)

    Article  Google Scholar 

  21. M. Gökçen, A. Tataroğlu, Ş Altındal, M.M. Bülbül, Radiat. Phys. Chem. 77, 74 (2008)

    Article  Google Scholar 

  22. W.-Y. Chen, J.-G. Duh, Mater. Lett. 186, 279 (2017)

    Article  CAS  Google Scholar 

  23. L. Wang, J. Tang, Q.-A. Huang, Sens Actuators A 177, 99 (2012)

    Article  CAS  Google Scholar 

  24. R.C. Murty, Nature 207, 398 (1965)

    Article  CAS  Google Scholar 

  25. A. Sharma, Y.-J. Jang, J.B. Kim, J.P. Jung, J. Alloys Compd. 704, 795 (2017)

    Article  CAS  Google Scholar 

  26. N. Bao, X. Hu, Y. Li, X. Jiang, J. Mater. Sci. Mater. Electron. 29, 8863 (2018)

    Article  CAS  Google Scholar 

  27. B. Margolin, A. Sorokin, V. Shvetsova, A. Minkin, V. Potapova, V. Smirnov, J. Nucl. Mater. 480, 52 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was supported by National Natural Science Foundation of China (Grant No. 51675269) and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Songbai Xue.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Xue, S., Lv, Z. et al. Effect of gamma-ray irradiation on microstructure and mechanical property of Sn63Pb37 solder joints. J Mater Sci: Mater Electron 29, 20726–20733 (2018). https://doi.org/10.1007/s10854-018-0213-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-0213-8

Navigation