Skip to main content

Advertisement

Log in

Structure and electrochemical performance of Samarium substituted LiNi1/3Mn1/3Co1/3O2 cathode materials for rechargeable lithium-ion batteries

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Large-scale energy storage required high energy density, high cyclic stabilities during high voltage operation and large specific capacity. In this record Li-rich cathode material LiNi1/3Mn1/3Co1/3O2 was doped with Sm is synthesized using citric acid as a chelating agent. Different amount of Sm was doped to investigate the effect of physical and electrochemical properties. The prepared samples were characterized by thermo gravimetric differential thermal analysis (TG-DTA), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), cyclic voltammetry (CV), electrochemical impedance spectra (EIS) and galvanostatic charge–discharge techniques. The powder material was calcined at 800 °C for 10 h which exhibits a polyhedral structure. The electrochemical measurements of (LiNi1/3Mn1/3Co1/3−xSmx)O2 cathode materials possess the best performance, especially at a high rate. The initial discharge capacity of 264.1 mA h−1 at 0.1 C has reduced only 10.57% after the 100th cycle. Electrochemical impedance spectrum indicates that, LiNi1/3Mn1/3Co1/3−xSmxO2 electrode has lower resistance during cycling. Such an improvement is associated with the doping of Sm enhancing the ability of Li diffusion in LiNi1/3Mn1/3Co1/3−x SmxO2 components. Results indicate that the structure of dopant samples have exhibited enhanced electrochemical performance with higher capacity and excellent cyclic capacity compared with the parent component.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. G. Cohn, J. Wang, ,C. Pellegrinelli, K. Huang, E.D. Wachsman, J. Electrochem. Soc. 163, 979 (2016)

    Article  Google Scholar 

  2. X. Luo, J. Wang, M. Dooner, J. Clarke, Appl. Energy 137, 511 (2015)

    Article  Google Scholar 

  3. S. Prakash, C. Zhang, J.D. Park, F. Razmjooei, J.-S. Yu, J. Colloid Interf. Sci. 534, 47 (2019)

    Article  CAS  Google Scholar 

  4. Z. Zhu, D. Zhang, H. Yan, W. Li, Q. Lu, J. Mater. Chem. A 1, 5492 (2013)

    Article  CAS  Google Scholar 

  5. F.Y. Cheng, J. Liang, Z.L. Tao, J. Chen, Adv. Mater. 23, 1695 (2011)

    Article  CAS  Google Scholar 

  6. J. Yang, X. Zhang, X. Han, F. Cheng, Z.Tao and J. Chen, J. Mater. Chem. A. 1, 13742 (2013)

    Article  CAS  Google Scholar 

  7. W. Li, B. Song, A. Manthiram, Chem. Soc. Rev. 46, 3006 (2017)

    Article  CAS  Google Scholar 

  8. D. Deng, Energy Sci. & Eng. 5, 385 (2017)

    Google Scholar 

  9. G.E. Blomgren, J. J. Electrochem. Soc. 164, 5025 (2017)

    Google Scholar 

  10. W.B. Li, A. Song, Manthiram, Chem. Soc. Rev. 46, 3006 (2017)

    Article  CAS  Google Scholar 

  11. A. Manthiram, K. Chemelewski, E.-S. Lee, Energy Environ. Sci. 7, 1339 (2014)

    Article  CAS  Google Scholar 

  12. K. Kreder, A. Manthiram, ACS Energy Lett. 2, 64 (2017)

    Article  CAS  Google Scholar 

  13. Y. Koyama, N. Yabuuchi, I. Tanaka, H. Adachi, T. Ohzuku, J. Electrochem. Soc. 151, A1545 (2004)

    Article  CAS  Google Scholar 

  14. C.H. Lu, Y.K. Lin, J. Power Sources 189, 40 (2009)

    Article  CAS  Google Scholar 

  15. N.N. An, N. Sinha, Munichandraiah, ACS Appl. Mater. Interfaces 1, 1241 (2009)

    Article  Google Scholar 

  16. W. Luo, X. Li, J.R. Dahn, Chem. Mater. 22, 5065 (2010)

    Article  CAS  Google Scholar 

  17. W. Luo, F. Zhou, X. Zhao, Z. Lu, X. Li, J.R. Dahn, Chem. Mater. 22, 1164 (2010)

    Article  CAS  Google Scholar 

  18. B. Qiu, M. Zhang, Y. Xia, Z. Liu, Y.S. Meng, Chem. Mater. 29, 908 (2017)

    Article  CAS  Google Scholar 

  19. S.-T. Myung, F. Maglia, K.J. Park, C.S. .Yoon, P. Lamp, ACS Energy Lett. 2, 196 (2017)

    Article  CAS  Google Scholar 

  20. Y. Xie, Y. Jin, L. Xiang, Crystals. 7, 221 (2017)

    Article  Google Scholar 

  21. S.-H. Chung, C.H. Chang, A. Manthiram, A, ACS Nano 10, 10462 (2016)

    Article  CAS  Google Scholar 

  22. X.-M. Liu, W.-L. Gao, B.-M. Ji, J. Sol-Gel Sci. Technol. 61, 56​ (2012)

    Article  CAS  Google Scholar 

  23. X.-Y. Qiu, Q.-C. Zhuan, Q.-Q. Zhang, R. Cao, Y.-H. Qiang, P.-Z. Ying, S.-G. Sun. J. Electroanal. Chem. 687, 35 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The first author would like to thank the Department of Science and Technology (DST), New Delhi, for providing financial assistance under the DST-INSPIRE Program. The authors also thank the DST – PURSE–II and MHRD – RUSA – 2.0, New Delhi for providing financial assistance to carry out this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Paruthimal Kalaignan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalaiselvi, K., Paruthimal Kalaignan, G. Structure and electrochemical performance of Samarium substituted LiNi1/3Mn1/3Co1/3O2 cathode materials for rechargeable lithium-ion batteries. J Mater Sci: Mater Electron 29, 20703–20709 (2018). https://doi.org/10.1007/s10854-018-0210-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-0210-y

Navigation