Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 24, pp 20695–20702 | Cite as

Towards understanding the morphological, magnetic, optical and electrical properties of MnO2 nanowires for magneto-and optoelectronic applications

  • M. A. AwadEmail author
  • N. M. A. Hadia


Mixed solutions of manganese sulfate and potassium permanganate were hydrothermally used to synthesis α-MnO2 nanowires. Energy dispersive analysis of X-ray revealed the formation of stoichiometric MnO2 and X-ray diffraction revealed the formation of single crystalline α-MnO2. Examinations using both SEM and TEM yielded nanowires with diameters ranged from 40 to 50 nm and lengths ranged from 5 to 6 µm. The magnetic properties revealed that the α-MnO2 NWs exhibit ferromagnetic/antiferromagnetic characteristics at liquid nitrogen and room temperatures. This kind of materials may be find usage in electromagnetic shielding applications. Direct optical band gap of 2.6 eV, that was blue shifted from the bulk value, was reported. Photoluminescence examinations displayed a strong emission peak around 395 nm and broad peak around 477 nm. The α-MnO2 NWs showed a semiconducting behavior where the resistivity decreased with increasing temperature. Two activation energies were reported; the low temperature activation energy was 0.089 eV and the high temperature activation energy was 0.782 eV. Based on the observed high intensity UV emission peak, the obtained α-MnO2 NWs may find applications in UV light emitting diodes.


  1. 1.
    A. Akbari, M. Amini, A. Tarassoli, B. Eftekhari-Sis, N. Ghasemian, E. Jabbari, Nano-Struct. Nano-Objects 14, 19–48 (2018)CrossRefGoogle Scholar
  2. 2.
    C.M. Hung, D.T.T. Le, N.V. Hieu, J. Sci.: Adv. Mater. Devices 2, 263–285 (2017)Google Scholar
  3. 3.
    S.H. Mohamed, J. Alloys Compd. 510, 119–124 (2012)CrossRefGoogle Scholar
  4. 4.
    G. Otnes, M.T. Borgström, Nano Today 12, 31–45 (2017)CrossRefGoogle Scholar
  5. 5.
    H.J. Kim, J.B. Lee, Y.-M. Kim, M.-H. Jung, Z. Jaglicic, P. Umek, J. Dolinsek, Nanoscale Res. Lett. 2, 81–86 (2007)CrossRefGoogle Scholar
  6. 6.
    W. Liang, L. Wang, H. Zhu, Y. Pan, Z. Zhu, H. Sun, C. Ma, A. Li, Sol. Energy Mat. Sol. C 180, 158–167 (2018)CrossRefGoogle Scholar
  7. 7.
    L. Chen, D. Zhu, Solid State Sci. 27, 69–72 (2014)CrossRefGoogle Scholar
  8. 8.
    C. Stella, N. Soundararajan, K. Ramachandran, Superlattice Microstruct. 71, 203–210 (2014)CrossRefGoogle Scholar
  9. 9.
    J.-L. Xiao, S.-Y. Sun, X. Song, P. Li, J.-G. Yu, Chem. Eng. J. 279, 659–666 (2015)CrossRefGoogle Scholar
  10. 10.
    M. Gheju, I. Balcu, G. Mosoarca, J. Hazard. Mater. 310, 270–277 (2016)CrossRefGoogle Scholar
  11. 11.
    M.M. Makhlouf, Sens. Actuators A 279, 145–156 (2018)CrossRefGoogle Scholar
  12. 12.
    S. Devaraj, N. Munichandraiah, J. Phys. Chem. C 112, 4406–4417 (2008)CrossRefGoogle Scholar
  13. 13.
    R.A. Davoglio, G. Cabello, J.F. Marco, S.R. Biaggio, Electrochim. Acta 261, 428–435 (2018)CrossRefGoogle Scholar
  14. 14.
    A.M. Toufiq, F. Wang, H. Ullah, Shah, Phys. Status Solidi C 14, 1700176 (2017)Google Scholar
  15. 15.
    Y. Gao, Z. Wang, J. Wan, G. Zou, Y. Qian, J. Cryst. Growth 279, 415–419 (2005)CrossRefGoogle Scholar
  16. 16.
    D.S. Patil, S.A. Pawar, J.C. Shin, J. Ind. Eng. Chem. 62, 166–175 (2018)CrossRefGoogle Scholar
  17. 17.
    W. Tang, Y.Y. Hou, X.J. Wang, Y. Bai, Y.S. Zhu, H. Sun, Y.B. Yue, Y.P. Wu, K. Zhu, R. Holze, J. Power Sources 197, 330–333 (2012)CrossRefGoogle Scholar
  18. 18.
    G. Cheng, L. Yu, B. Lan, M. Sun, T. Lin, Z. Fu, X. Su, M. Qiu, C. Guo, B. Xu, Mater. Res. Bull. 75, 17–24 (2016)CrossRefGoogle Scholar
  19. 19.
    Q. Liu, L. Geng, T. Yang, Y. Tang, P. Jia, Y. Li, H. Li, T. Shen, L. Zhang, J. Huang, In-situ imaging electrocatalysis in a Na–O2 battery with Au-coated MnO2 nanowires air cathode. Energy Storage Mater. (2018) (in press)Google Scholar
  20. 20.
    J. Liu, V. Makwana, J. Cai, S.L. Suib, M. Aindow, J. Phys. Chem. B 107, 9185–9194 (2003)CrossRefGoogle Scholar
  21. 21.
    A.G.M. da Silva, C.M. Kisukuri, T.S. Rodrigues, E.G. Candido, I.C. de Freitas, A.H.M. da Silva, J.M. Assaf, D.C. Oliveira, L.H. Andrade, P.H.C. Camargo, Appl. Catal. B: Environ. 184, 35–43 (2016)CrossRefGoogle Scholar
  22. 22.
    L. Han, J. Shi, A. Liu, Sens. Actuators B: Chem. 252, 919–926 (2017)CrossRefGoogle Scholar
  23. 23.
    R. Ranjusha, T.S. Sonia, S. Roshny, V. Lakshmi, S. Kalluri, T. NamKim, S.V. .Nair, A. Balakrishnan, Mater. Res. Bull. 70, 1–6 (2015)CrossRefGoogle Scholar
  24. 24.
    A.R. Selvaraj, R. Rajendiran, D. Chinnadurai, G. Rajendr, K.H.-J. Kim, K. Senthil, K. Prabakar, Electrochim. Acta 283, 1679–1688 (2018)CrossRefGoogle Scholar
  25. 25.
    G.H. Yue, P.X. Yan, D. Yan, D.M. Qu, X.Y. Fan, M.X. Wang, H.T. Shang, J. Cryst. Growth 294, 385–388 (2006)CrossRefGoogle Scholar
  26. 26.
    L. Sanchez-Botero, A.P. Herrera, J.P. Hinestroza, Nanomaterials 7, 117 (2017)CrossRefGoogle Scholar
  27. 27.
    N. Rajamanickam, P. Ganesan, S. Rajashabala, K. Ramachandran, AIP Conf. Proc. 1591 (2014) 267CrossRefGoogle Scholar
  28. 28.
    J. Luo, H.T. Zhu, J.K. Liang, G.H. Rao, J.B. Li, Z.M. Du, J. Phys. Chem. C 114, 8782–8786 (2010)CrossRefGoogle Scholar
  29. 29.
    W.D. Callister Jr., D.G. Rethwisch, Materials Science and Engineering an Introduction, 8th edn. (Wiley, New York, 2010)Google Scholar
  30. 30.
    B.D. Cullity, Elements of X-Ray Diffraction (Addison-Wesley, Reading, 1972)Google Scholar
  31. 31.
    B. Bayyappagari, K. Shaik, Appl. Phys. A 124, 7 (2018)CrossRefGoogle Scholar
  32. 32.
    M.S. Alqahtani, N.M.A. Hadia, S.H. Mohamed, Optik 145, 377–386 (2017)CrossRefGoogle Scholar
  33. 33.
    P. Kollu, S. Prathapani, E.K. Varaprasadarao, C. Santosh, S. Mallick, A.N. Grace, D. Bahadur, Appl. Phys. Lett. 105, 052412 (2014)CrossRefGoogle Scholar
  34. 34.
    V. Marghussian, Nano-Glass Ceramics Processing, Properties and Applications (William Andrew, Oxford, 2015)Google Scholar
  35. 35.
    J. Tauc, Amorphous and Liquid Semiconductors (Plenum Press, New York, 1974)CrossRefGoogle Scholar
  36. 36.
    A.M. Toufiq, F.P. Wang, Q.U.A. Javed, Q.S. Li, Y. Li, Appl. Phys. A 116, 1127 (2014)CrossRefGoogle Scholar
  37. 37.
    A. Gagrani, J. Zhou, T. Tsuzuki, Ceram. Int. 44, 4694–4698 (2018)CrossRefGoogle Scholar
  38. 38.
    S.H. Mohamed, M. El-Hagary, M. Emam-Ismail, J. Phys. D 43, 075401 (2010)CrossRefGoogle Scholar
  39. 39.
    P. Prathap, N. Revathi, Y.P.V. Subbaiah, K.T. Ramakrishna Reddy, J. Phys. 20, 035205 (2008)Google Scholar
  40. 40.
    A.M. Toufiq, F.P. Wang, Q.U.A. Javed, Q.S. Li, Y. Li, Mater. Lett. 118, 34 (2014)CrossRefGoogle Scholar
  41. 41.
    S.H. Mohamed, Kh.M. AlMokhtar, Appl. Phys. A 124, 493 (2018)CrossRefGoogle Scholar
  42. 42.
    W.P. Wuelfing, R.W. Murray, J. Phys. Chem. B 106, 3139 (2002)CrossRefGoogle Scholar
  43. 43.
    N.M.A. Hadia, M.A. Awad, S.H. Mohamed, E.M.M. Ibrahim, Appl. Phys. A 122, 889 (2016)CrossRefGoogle Scholar
  44. 44.
    P. Fau, J.P. Bonino, A. Rousset, Appl. Surf. Sci. 78, 203–210 (1994)CrossRefGoogle Scholar
  45. 45.
    C.M. Julien, A. Mauger, Nanomaterials 7, 396 (2017)CrossRefGoogle Scholar
  46. 46.
    R.S.S. Saravanan, D. Pukazhselvan, C.K. Mahadevan, J. Alloys Compd. 517, 139 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Physics Department, Faculty of ScienceSohag UniversitySohagEgypt
  2. 2.Department of Physics, College of ScienceJouf UniversityJoufSaudi Arabia

Personalised recommendations