Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 24, pp 20688–20694 | Cite as

The effect of Mg(NO3)2 addition on the formation of AlN nanowire by direct nitridation

  • Fatih KurtulduEmail author
  • Azim Gökçe
  • Ali Osman Kurt


In this study AlN nanowire was produced via direct nitridation (DN) method. In order to investigate the effect of nitridation on the formation of nanowire, elemental aluminum powder and ammonium chloride (NH4Cl) mixture was prepared with and without the addition of minor amount (0.5 wt%) of magnesium nitrate (Mg(NO3)2). The experiments were performed in a conventional electric resistance furnace coupled with a horizontal stainless-steel tube. Nitridation was carried out at 800–1000 °C for 2 h in N2 atmosphere. Differential scanning calorimetry and thermal gravimetric analyses were performed to powder mixtures, in order to examine the effect of Mg(NO3)2 addition on the morphology of AlN nanowire. X-ray diffraction (XRD), Field Emission Scanning Electron Microscopy (FE-SEM) and Energy-dispersive X-ray spectroscopy (EDS) techniques were also performed to identify to formed phases after the DN method. Using this technique, it was shown that with an addition of Mg(NO3)2 at 950 °C in N2 atmosphere a complete transformation to AlN nanowires was achieved having diameters of 40–45 nm.



The authors would like to acknowledge The Scientific and Technological Research Council of Turkey for partially financial support provided through the project (Nu. 115M562).


  1. 1.
    P.G. Caceres, H.K. Schmid, J. Am. Ceram. Soc. 77, 977 (1994)CrossRefGoogle Scholar
  2. 2.
    C. Li, L. Hu, W. Yuan, M. Chen, Mater. Chem. Phys. 47, 273 (1996)CrossRefGoogle Scholar
  3. 3.
    A. Mills, III-Vs Rev. 19, 25 (2006)Google Scholar
  4. 4.
    Q. Wu, Z. Hu, X. Wang, Y. Lu, K. Huo, S. Deng, N. Xu, B. Shen, R. Zhang, Y. Chen, J. Mater. Chem. 13, 2024 (2003)CrossRefGoogle Scholar
  5. 5.
    C. Wu, Q. Yang, C. Huang, D. Wang, P. Yin, T. Li, Y. Xie, J. Solid State Chem. 177, 3522 (2004)CrossRefGoogle Scholar
  6. 6.
    M. Radwan, M. Bahgat, J. Mater. Process. Technol. 181, 99 (2007)CrossRefGoogle Scholar
  7. 7.
    R.K. Paul, K.H. Lee, B.T. Lee, H.Y. Song, Mater. Chem. Phys. 112, 562 (2008)CrossRefGoogle Scholar
  8. 8.
    N. Ramdani, M. Derradji, J. Wang, E. Mokhnache, W. Liu, Y. Liu, W. Dong, J. Therm. Anal. Calorim. 126, 561 (2016)CrossRefGoogle Scholar
  9. 9.
    P. Rajeshwari, T.K. Dey, J. Therm. Anal. Calorim. 125, 369 (2016)CrossRefGoogle Scholar
  10. 10.
    G. Selvaduray, L. Sheet, Mater. Sci. Technol. 9, 463 (1993)CrossRefGoogle Scholar
  11. 11.
    N. Mutlu, N. Canikoglu, A.O. Kurt, in 15th Conference & Exhibition of the European Ceramic Society (ECerS2017), 2017, pp. 81–82Google Scholar
  12. 12.
    A.O. Kurt, The production method of high technology ceramics’ raw materials in rotary furnace under controlled atmosphere, TR Patent, 2011-G-75852, 21 August 2014Google Scholar
  13. 13.
    C.H. Li, L.H. Kao, M.J. Chen, Y.F. Wang, C.H. Tsai, J. Alloys Compd. 542, 78 (2012)CrossRefGoogle Scholar
  14. 14.
    L. Li, X. Hao, N. Yu, D. Cui, X. Xu, M. Jiang, J. Cryst. Growth 258, 268 (2003)CrossRefGoogle Scholar
  15. 15.
    W.S. Jung, S.K. Ahn, Mater. Lett. 43, 53 (2000)CrossRefGoogle Scholar
  16. 16.
    S. Iijima, Nature 354, 56 (1991)CrossRefGoogle Scholar
  17. 17.
    Q. Wu, Z. Hu, X. Wang, Y. Lu, X. Chen, H. Xu, Y. Chen, J. Am. Chem. Soc. 125, 10176 (2003)CrossRefGoogle Scholar
  18. 18.
    S. Zhao, A.T. Connie, M.H.T. Dastjerdi, X.H. Kong, Q. Wang, M. Djavid, S. Sadaf, X.D. Liu, I. Shih, H. Guo, Z. Mi, Sci. Rep. 5, 1 (2014)Google Scholar
  19. 19.
    K.T. Kenry, Yong, S.F. Yu, J. Mater. Sci. 47, 5341 (2012)CrossRefGoogle Scholar
  20. 20.
    M. Mashhadi, F. Mearaji, M. Tamizifar, Int. J. Refract. Met. Hard Mater. 46, 181 (2014)CrossRefGoogle Scholar
  21. 21.
    M. Radwan, M. Bahgat, A.A. El-Geassy, J. Eur. Ceram. Soc. 26, 2485 (2006)CrossRefGoogle Scholar
  22. 22.
    H.W. Kim, M.A. Kebede, H.S. Kim, Appl. Surf. Sci. 255, 7221 (2009)CrossRefGoogle Scholar
  23. 23.
    M. Zheng, Q. Jia, S. Zhu, X. Liu, Ceram. Int. 44, 7267 (2018)CrossRefGoogle Scholar
  24. 24.
    R.N. Lumley, T.B. Sercombe, G.M. Schaffer, Metall. Mater. Trans. A 30, 457 (1999)CrossRefGoogle Scholar
  25. 25.
    G.B. Schaffer, B.J. Hall, Metall. Mater. Trans. A 33, 3279 (2002)CrossRefGoogle Scholar
  26. 26.
    A. Kimura, M. Shibata, K. Kondoh, Y. Takeda, M. Katayama, T. Kanie, H. Takada, Appl. Phys. Lett. 70, 3615 (1997)CrossRefGoogle Scholar
  27. 27.
    C.D. Boland, R.L. Hexemer, I.W. Donaldson, D.P. Bishop, Mater. Sci. Eng. A 559, 902 (2013)CrossRefGoogle Scholar
  28. 28.
    A. Gökçe, F. Findik, A.O. Kurt, Mater. Charact. 62, 730 (2011)CrossRefGoogle Scholar
  29. 29.
    G.B. Schaffer, T.B. Sercombe, R.N. Lumley, Mater. Chem. Phys. 67, 85 (2001)CrossRefGoogle Scholar
  30. 30.
    S. Angappan, R.A. Jeneafer, A. Visuvasam, L.J. Berchmans, Est. J. Eng. 19, 239 (2013)CrossRefGoogle Scholar
  31. 31.
    Y. Qiu, L. Gao, J. Eur. Ceram. Soc. 23, 2015 (2003)CrossRefGoogle Scholar
  32. 32.
    A.D. McLeod, C.M. Gabryel, Metall. Trans. A 23, 1279 (1992)CrossRefGoogle Scholar
  33. 33.
    A. Gökçe, F. Findik, A.O. Kurt, Mater. Des. 46, 524 (2013)CrossRefGoogle Scholar
  34. 34.
    S. Zhao, C. Wang, M. Chen, J. Sun, Carbon N. Y. 47, 331 (2008)CrossRefGoogle Scholar
  35. 35.
    T. Pieczonka, T. Schubert, S. Baunack, B. Kieback, Mater. Sci. Eng. A 478, 251 (2008)CrossRefGoogle Scholar
  36. 36.
    A. Matsumoto, K. Kobayashi, K. Ozaki, T. Nishio, Novel Materials Processing by Advanced Electromagnetic Energy Sources (Elsevier, Amsterdam, 2005), pp. 377–380CrossRefGoogle Scholar
  37. 37.
    Z.Y. Liu, T.B. Sercombe, G.B. Schaffer, Metall. Mater. Trans. A 38, 1351 (2007)CrossRefGoogle Scholar
  38. 38.
    A. Gökçe, F. Findik, A.O. Kurt, Can. Metall. Q. 55, 391 (2016)CrossRefGoogle Scholar
  39. 39.
    L. Yu, Y. Lv, X. Zhang, Y. Zhang, R. Zou, F. Zhang, J. Cryst. Growth 334, 57 (2011)CrossRefGoogle Scholar
  40. 40.
    H. Hu, Z. Wu, W. Zhang, H. Li, R. Zhuo, D. Yan, J. Wang, P. Yan, J. Alloys Compd. 624, 241 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.FunGlassAlexander Dubček University of TrenčínTrenčínSlovakia
  2. 2.Department of Metallurgy & Materials Engineering, Faculty of TechnologySakarya UniversitySakaryaTurkey
  3. 3.Department of Metallurgy & Materials Engineering, Engineering FacultySakarya UniversitySakaryaTurkey

Personalised recommendations