Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 24, pp 20680–20687 | Cite as

Effects of (Na1/2Nd1/2)TiO3 on the microstructure and microwave dielectric properties of PTFE/ceramic composites

  • Minghao Yao
  • Ying YuanEmail author
  • Enzhu Li
  • Bin Tang
  • Shuren Zhang


A study on polytetrafluoroethylene (PTFE) composites with Na1/2Nd1/2TiO3 (NNT) ceramic and E glass shorten fiber (E-GF) was described. The E-GF content was fixed at 5 wt.%, and the NNT content varied from 12.1 vol.% to 42.8 vol.%. This paper systematically introduced the preparation process of composites and the effects of NNT filling content on the properties of composites. The surface modification of ceramic powders was observed by Fourier Transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS), which proved that NNT surfaces have been modified by Perfluorooctyltriethoxysilane (F8261) successfully. When the NNT filling content was 42.8 vol.%, substrate material with a low water absorption of 0.12%, high dielectric constant of 9.45, low dielectric loss of 0.0024, and τε of -222 ppm/°C were achieved, which is of great reference significance for the miniaturization and integration of microwave devices.



This work has been supported by the Science and Technology Planning Project of Guangdong Province of China (No. 2017A010103001).


  1. 1.
    C.H. Yang, C.F. Xing, L. Zhao, J.X. Bi, H.T. Wu, Effect of Co-substitution on the sintering characteristics and microwave dielectric properties of Li2 MgTiO4 ceramics. Ceram. Int. 44(6), 7286–7290 (2018)CrossRefGoogle Scholar
  2. 2.
    J.J. Bian, X.H. Zhang, Structural evolution, grain growth kinetics and microwave dielectric properties of Li2Ti1-x (Mg1/3Nb2/3)xO3. J. Eur. Ceram. Soc. 38(2), 599–604 (2018)CrossRefGoogle Scholar
  3. 3.
    C. Li, H. Xiang, M. Xu, Y. Tang, L. Fang, Li2 AGeO4 (A = Zn, Mg): two novel low-permittivity microwave dielectric ceramics with olivine structure. J. Eur. Ceram. Soc. 38(4), 1524–1528 (2018)CrossRefGoogle Scholar
  4. 4.
    K.M. Manu, S. Ananthakumar, M.T. Sebastian, Electrical and thermal properties of low permittivity Sr2Al2SiO7 ceramic filled HDPE composites. Ceram. Int 39(5), 4945–4951 (2013)CrossRefGoogle Scholar
  5. 5.
    C. Wang, M. Zhao, J. Li, J. Yu, S. Sun, S. Ge et al., Silver nanoparticles/graphene oxide decorated carbon fiber synergistic reinforcement in epoxy-based composites. Polymer 131, 263–271 (2017)CrossRefGoogle Scholar
  6. 6.
    K.-C. Cheng, C.-M. Lin, S.-F. Wang, S.-T. Lin, C.-F. Yang, Dielectric properties of epoxy resin–barium titanate composites at high frequency. Mater. Lett 61(3), 757–760 (2007)CrossRefGoogle Scholar
  7. 7.
    K.P. Murali, S. Rajesh, O. Prakash, A.R. Kulkarni, R. Ratheesh, Comparison of alumina and magnesia filled PTFE composites for microwave substrate applications. Mater. Chem. Phys. 113(1), 290–295 (2009)CrossRefGoogle Scholar
  8. 8.
    Y. Yuan, Y.R. Cui, K.T. Wu, Q.Q. Huang, S.R. Zhang, TiO2 and SiO2 filled PTFE composites for microwave substrate applications. J. Polym. Res 21(2), 366 (2014)CrossRefGoogle Scholar
  9. 9.
    Y.-C. Chen, H.-C. Lin, Y.-D. Lee, The effects of filler content and size on the properties of PTFESiO2 composites. J. Polym. Res 10(4), 247–258 (2003)CrossRefGoogle Scholar
  10. 10.
    Y. Yuan, J. Wang, M. Yao, B. Tang, E. Li, S. Zhang, Influence of SiO2 addition on properties of PTFE/TiO2 microwave composites. J. Electron. Mater. 2017; CrossRefGoogle Scholar
  11. 11.
    S. Rajesh, K.P. Murali, K.V. Rajani, R. Ratheesh, SrTiO3-filled PTFE composite laminates for microwave substrate applications. Int. J. Appl. Ceram. Technol 6(5), 553–561 (2009)CrossRefGoogle Scholar
  12. 12.
    Y. Hu, Y. Zhang, H. Liu, D. Zhou, Microwave dielectric properties of PTFE/CaTiO3 polymer ceramic composites. Ceram. Int. 37(5), 1609–1613 (2011)CrossRefGoogle Scholar
  13. 13.
    T.S. Sasikala, M.T. Sebastian, Mechanical, thermal and microwave dielectric properties of Mg2SiO4 filled Polyteterafluoroethylene composites. Ceram. Int. 42(6), 7551–7563 (2016 reading)CrossRefGoogle Scholar
  14. 14.
    M.T. Sebastian, H. Jantunen, Polymer-ceramic composites of 0–3 connectivity for circuits in electronics: a review. Int. J. Appl. Ceram. Technol 7(4), 415–434 (2010)Google Scholar
  15. 15.
    N.K. James, K.S. Jacob, K.P. Murali, R. Ratheesh, Ba(Mg1/3Ta2/3)O3 filled PTFE composites for microwave substrate applications. Mater. Chem. Phys. 122(2–3), 507–511 (2010)CrossRefGoogle Scholar
  16. 16.
    P.L. Wisea, I.M.R. *, W.E. Leea, T.J. Priceb, D.M. Iddlesb, D.S. Cannellb, Structure-microwave property relations of Ca and Sr titanates. J. Eur. Ceram. Soc. 21, 2629–2632 (2001)CrossRefGoogle Scholar
  17. 17.
    S. Rajesh, K.P. Murali, R. Ratheesh, Preparation and characterization of high permittivity and low loss PTFE/CaTiO3 microwave laminates. Polym. Compos 30(10), 1480–1485 (2009)CrossRefGoogle Scholar
  18. 18.
    L. Zhou, B. Tang, S. Zhang, Influence of Sn-substitution on microstructure and microwave dielectric properties of Na1/2Nd1/2TiO3 ceramics. J. Mater. Sci. 26, 424–428 (2015)Google Scholar
  19. 19.
    Z. Xi, O.R. Ghita, K.E. Evans, The unusual thermal expansion behaviour of PTFE/GF composites incorporating PTFE/GF recyclate. Compos. Part A 43(11), 1999–2006 (2012)CrossRefGoogle Scholar
  20. 20.
    P.M. Patare, G.S. Lathkar, Optimization of glass fiber and MoS2 filled PTFE composites using non traditional optimization techniques. Mater. Today 5(2), 7310–7319 (2018)CrossRefGoogle Scholar
  21. 21.
    C. Cai, N. Sang, S. Teng, Z. Shen, J. Guo, X. Zhao et al., Superhydrophobic surface fabricated by spraying hydrophobic R974 nanoparticles and the drag reduction in water. Surf. Coat. Technol. 307, 366–373 (2016)CrossRefGoogle Scholar
  22. 22.
    J. Gu, Y. Li, C. Liang, Y. Tang, L. Tang, Y. Zhang et al., Synchronously improved dielectric and mechanical properties of wave-transparent laminated composites combined with outstanding thermal stability by incorporating iysozyme/POSS functionalized PBO fibers. J. Mater. Chem. C 6(28), 7652–7660 (2018)CrossRefGoogle Scholar
  23. 23.
    H.Y.K.L.V.J.L. Prince, Dielectric constant and loss tangent measurement using a stripline fixture. IEEE Trans. Compon. Packag Manuf. Technol. Part B 21(4), 441–446 (1998)CrossRefGoogle Scholar
  24. 24.
    F. Luo, B. Tang, Y. Yuan, Z. Fang, S. Zhang, Microstructure and microwave dielectric properties of Na1/2Sm 1/2TiO3 filled PTFE, an environmental friendly composites. Appl. Surf. Sci 436, 900–906 (2018)CrossRefGoogle Scholar
  25. 25.
    C. Gao, E. Li, Y. Zhang, C. Yu, Y. Gao, Novel ultra-wideband test fixture and method for attenuation of the attenuator-coated dielectric support rod in a helical slow-wave structure. Rev. Sci. Instr 89(8), 084708 (2018)CrossRefGoogle Scholar
  26. 26.
    P. Xie, Z. Wang, Z. Zhang, R. Fan, C. Cheng, H. Liu et al., Silica microsphere templated self-assembly of a three-dimensional carbon network with stable radio-frequency negative permittivity and low dielectric loss. J. Mater. Chem. C 6(19), 5239–5249 (2018)CrossRefGoogle Scholar
  27. 27.
    K. Pathmanathan, J.Y. Cavaille, G.P. Johari, Dielectric relaxations of microstructurally different latex polymer blends of poly(butyl acrylate) and poly(vinyl acetate). Polymer 29(2), 311–319 (1988)CrossRefGoogle Scholar
  28. 28.
    Z. Fang, B. Tang, F. Si, S. Zhang, Influence of CeO2 on microstructure and microwave dielectric properties of Na1/2Sm1/2TiO3 ceramics. J. Mater. Sci. 27(2), 1913–1919 (2015)Google Scholar
  29. 29.
    P-H. Sun, T. Nakamura, Y.-J. Shan, Y. Inaguma, M. Itoh, High temperature quantum paraelectricity in perovskite-type titanates Ln1/2Na1/2TiO3(Ln = La, Pr, Nd, Sm, Eu, Gd and Tb). Ferroelectrics 200(1), 93–107 (1997)CrossRefGoogle Scholar
  30. 30.
    I. Kagomiya, Y. Yamada, K. Kakimoto, Ohsato H. Microwave Dielectric Properties of NaxNd(2-x)/3TiO3 Solid Solutions. IEEE Trans. Compon. Packag. Manuf. Technol. Part B 55(12), 2582–2585 (2008)Google Scholar
  31. 31.
    R.W. Paynter, M. Ménard, ARXPS study of a plasma-treated polymer surface: an example of Case II diffusion? J. Electron Spectrosc. Relat. Phenomen 151(1), 14–18 (2006)CrossRefGoogle Scholar
  32. 32.
    M.E. Alemán-Domínguez, Z. Ortega, A.N. Benítez, G. Vilariño-Feltrer, J.A. Gómez-Tejedor, A. Vallés-Lluch, Tunability of polycaprolactone hydrophilicity by carboxymethyl cellulose loading. J. Appl. Polym. Sci. 135(14), 46134 (2018)CrossRefGoogle Scholar
  33. 33.
    Z. Guo, X. Liang, T. Pereira, R. Scaffaro, H. Thomas Hahn, CuO nanoparticle filled vinyl-ester resin nanocomposites: fabrication, characterization and property analysis. Compos. Sci. Technol 67(10), 2036–2044 (2007)CrossRefGoogle Scholar
  34. 34.
    K.P. Murali, S. Rajesh, O. Prakash, A.R. Kulkarni, R. Ratheesh, Preparation and properties of silica filled PTFE flexible laminates for microwave circuit applications. Compos. Part A 40(8), 1179–1185 (2009)CrossRefGoogle Scholar
  35. 35.
    S. Rajesh, K.P. Murali, H. Jantunen, R. Ratheesh, The effect of filler on the temperature coefficient of the relative permittivity of PTFE/ceramic composites. Phys. B 406(22), 4312–4316 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.National Engineering Center of Electromagnetic Radiation Control MaterialsUniversity of Electronic Science and Technology of ChinaChengduPeople’s Republic of China
  2. 2.State Key Laboratory of Electronic Thin Films and Integrated DevicesUniversity of Electronic Science and Technology of ChinaChengduPeople’s Republic of China
  3. 3.Institute of Electronic and Information Engineering of UESTC in GuangdongDongguanPeople’s Republic of China

Personalised recommendations