Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 24, pp 20668–20679 | Cite as

A new visible driven nanocomposite including Ti-substituted polyoxometalate/TiO2: synthesis, characterization, photodegradation of azo dye process optimization by RSM and specific removal rate calculations

  • Ezzat RafieeEmail author
  • Elham Noori
  • Ali Akbar Zinatizadeh
  • Hadis Zanganeh


A new visible driven photocatalyst K7Ti2W10PO40/TiO2 (KPW/TiO2) with various KPW contents (2, 11 and 20 wt%) was successfully synthesized through a modified sol–gel-hydrothermal method. The structural properties of the prepared nanocomposite were characterized by X-ray diffraction, field emission scanning electron microscopy, Fourier transform infrared, photoluminescence spectroscopy and diffuse reflectance spectra (DRS). From the results obtained, the 11-KPW/TiO2 showed the highest photocatalytic activity. Photoluminescence analysis for all synthesized samples showed that the 11-KPW/TiO2 had the lowest intensity and recombination rate of photogenerated electron and holes. Tauc plots of the photocatalysts show that the presence of KPW in the x-KPW/TiO2 nanocomposites reduced the band gap of nanocomposites, but the change in the amount of KPW have not a specific effect on the band gap reduction. It seems that the change in the loading of the KPW is effective on the amount of recombination of electron–hole. The absorption edge of the modified TiO2 showed a red shift into the visible light range. Mott–Schottky plots show a positive slope as expected for n-type semiconductor. The prepared photocatalysts were examined for degradation of DR16 under visible light irradiation. The performance of the photocatalyst was analyzed and modeled by response surface methodology. Optimum conditions were DR16 conc. of 20 mg/L, reaction time 4 h, initial pH (3) and polyoxometalate loading 11 wt%. In order to assess the treatment capacity of the nanophotocatalyst, specific removal rate for the DR16 at all operating conditions were calculated.



The authors thank the Razi University Research Council and Iran National Science Foundation (INSF) for support of this work.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    O. Turgay, G. Ersoz, S. Atalay, J. Forss, U. Welander, Sep. Purif. Technol. 79, 26 (2011)CrossRefGoogle Scholar
  2. 2.
    L. Alredha, R.A. Rubaie, R.j. Mhessn, E-J. Chem. 9, 465 (2012)CrossRefGoogle Scholar
  3. 3.
    B. Manu, S. Chaudhari, Process Biochem. 38, 1213 (2003)CrossRefGoogle Scholar
  4. 4.
    O.R. Lima, A.P. Bazo, D.M.F. Salvadori, C.M. Rech, D.P. Oliveira, G.A. Umbuzeiro, Mutat. Res. Genetic Toxicol. Environ. Mutagen 626, 53 (2007)CrossRefGoogle Scholar
  5. 5.
    T. Platzek, C. Lang, G. Grohmann, U.S. Gi, W. Baltes, Hum. Exp. Toxicol. 18, 552 (1999)CrossRefGoogle Scholar
  6. 6.
    J. Singh, H. Kaur, M. Rawat, J. Mat. Sci.: Mater. Electron. (2018). CrossRefGoogle Scholar
  7. 7.
    I.K. Konstantinou, T.A. Albanis, Appl. Catal. B: Environ. 49, 1 (2004)CrossRefGoogle Scholar
  8. 8.
    M. Muruganandham, R.P.S. Suri, Sh Jafari, M. Sillanpää, J.G. Lee, J.J. Wu, M. Swaminathan, Int. J. Photoenergy. 2014, Article ID821674 (2014). CrossRefGoogle Scholar
  9. 9.
    M. Sohrabi, M. Ghavami, J. Hazard. Mater. 153, 1235 (2008)CrossRefGoogle Scholar
  10. 10.
    S.M. Ghoreishian, Kh Badii, M. Norouzi, A. Rashidi, M. Montazer, M. Sadeghi, M. Vafaee, J. Taiwan Inst. Chem. Eng. 5, 2436 (2014)CrossRefGoogle Scholar
  11. 11.
    E.C. Ilinoiu, R. Pode, F. Manea, L.A. Colar, A. Jakab, C. Orha, C. Ratiu, C. Lazau, P. Sfarloaga, J. Taiwan Inst. Chem. Eng. 44, 270 (2013)CrossRefGoogle Scholar
  12. 12.
    P. Nyamukamba, L. Tichagwa, O. Okoh, L. Petrik, Mater. Sci. Semicond. Process. 76, 25 (2018)CrossRefGoogle Scholar
  13. 13.
    R. Mohammadi, M. Mohammadi, Desalination Water. Treat. 57, 11317 (2015)CrossRefGoogle Scholar
  14. 14.
    K. Kalyanasundaram, M. GratzeCoord, Chem. Rev. 177, 347 (1998)Google Scholar
  15. 15.
    A. Taufik, A. Albert, R. Saleh, J. Photochem. Photobiol. A 344, 149 (2017)CrossRefGoogle Scholar
  16. 16.
    D. Bahnemann, V. Etacheri, C.D. Valentin, J. Schneider, S.C. Pillai, J. Photochem. Photobiol. C 25, 1 (2015)CrossRefGoogle Scholar
  17. 17.
    M. Taghdiri, Int. J. Photoenergy (2017) CrossRefGoogle Scholar
  18. 18.
    C. Sijing, G. Qiang, Sh Hairu, L. Xia, Adv. Mater. Res. 1073–1076, 202 (2014)Google Scholar
  19. 19.
    E. Rafiee, E. Noori, A.A. Zinatizadeh, H. Zanganeh, RSC. Adv. 6, 96554 (2016)CrossRefGoogle Scholar
  20. 20.
    P. Lei, Ch Chen, J. Yang, W. Ma, Environ. Sci. Technol. 39, 8466 (2005)CrossRefGoogle Scholar
  21. 21.
    Y. Huang, Zh Yang, Sh Yang, Y. Xu, JAN 2, 146 (2017)CrossRefGoogle Scholar
  22. 22.
    I.K. Song, M.A. Barteau, J. Mol. Catal. A 212, 229 (2004)CrossRefGoogle Scholar
  23. 23.
    Ch Gu, C. Shannon, J. Mol. Catal. A 262, 185 (2007)CrossRefGoogle Scholar
  24. 24.
    H.Y. Yang, S.F. Yu, Sh.P. Lau, X. Zhang, D.D. Sun, G. Jun, Small 5, 2260 (2009)CrossRefGoogle Scholar
  25. 25.
    Zh. Sun, F. Li, M. Zhao, L. Xu, Sh. Fang, Electrochem. Commun. 30, 38 (2013)CrossRefGoogle Scholar
  26. 26.
    W. Tana, L. Luo, Y. Zheng, V. Jegatheesan, L. Shub, Sh Zhang, M. Yang, H. Wang, Process. Saf. Environ. 104, 558 (2016)CrossRefGoogle Scholar
  27. 27.
    E. Rafiee, E. Noori, A.A. Zinatizadeh, H. Zangeneh, Mat. Sci. Semicon. Proc. 83, 115 (2018)CrossRefGoogle Scholar
  28. 28.
    K. Li, Y. Guo, F. Ma, H. Li, L. Chen, Y. Guo, Catal. Commun. 11, 839 (2010)CrossRefGoogle Scholar
  29. 29.
    E. Rafiee, S. Eavani, J. Mol. Catal. A 373, 30 (2013)CrossRefGoogle Scholar
  30. 30.
    T. Bezrodna, T. Gavrilko, G. Puchkovska, V. Shimanovska, J. Baran, M. Marchewka, J. Mol. Struct. 614, 315 (2002)CrossRefGoogle Scholar
  31. 31.
    E. Noori, N. Mir, M. Salavati-Niasari, T. Gholami, M. Masjedi-Arani, J. Sol-Gel. Sci. Technol. 69, 544 (2014)CrossRefGoogle Scholar
  32. 32.
    N. Zhang, D. Chen, F. Niu, S. Wang, L. Qin, Y. Huang, Sci. Rep. 6, 26467 (2016)CrossRefGoogle Scholar
  33. 33.
    Z. Wang, J. Li, F. Tang, J. Lin, Zh. Jin, RSC Adv. 7, 23535 (2017)CrossRefGoogle Scholar
  34. 34.
    W. Smith, T. Kuykendall, Y. Zhao, J. Zhang, Adv. Funct. Mater. 19, 1849 (2009)CrossRefGoogle Scholar
  35. 35.
    H. Zangeneh, A.A. Zinatizadeh, M. Feyzi, S. Zinadini, D.W. Bahnemann, Mater. Sci. Semicond. Process 75, 193 (2018)CrossRefGoogle Scholar
  36. 36.
    A.R. Soleymani, R. Chahardoli, M. Kaykhai, J. Ind. Eng. Chem. 25, 90 (2016)CrossRefGoogle Scholar
  37. 37.
    J. Saien, M. Asgari, A.R. Soleymani, N. Taghavinia, Chem. Eng. J. 151, 295 (2009)CrossRefGoogle Scholar
  38. 38.
    S. Boumazaa, F. Kaouaha, D. Hamanea, M. Trari, S. Omeiri, Z. Bendjama, J. Mol. Catal. A 393, 156 (2014)CrossRefGoogle Scholar
  39. 39.
    F. Changgen, Zh. Xiaoxi, L. Xia, J. Rare Earth 27, 717 (2009)CrossRefGoogle Scholar
  40. 40.
    Sh. Gao, R. Cao, J. Lu, G. Li, M. Cao, H. Li, H. Yang, J. Mater. Chem. 19, 4157 (2009)CrossRefGoogle Scholar
  41. 41.
    H. Jin, Q. Wu, W. Pang, J. Hazard. Mater. 141, 123 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of ChemistryRazi UniversityKermanshahIran
  2. 2.Institute of Nano Science and Nano TechnologyRazi UniversityKermanshahIran
  3. 3.Department of Applied Chemistry, Environmental Research Center (ERC)Razi UniversityKermanshahIran

Personalised recommendations