Skip to main content
Log in

A new visible driven nanocomposite including Ti-substituted polyoxometalate/TiO2: synthesis, characterization, photodegradation of azo dye process optimization by RSM and specific removal rate calculations

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A new visible driven photocatalyst K7Ti2W10PO40/TiO2 (KPW/TiO2) with various KPW contents (2, 11 and 20 wt%) was successfully synthesized through a modified sol–gel-hydrothermal method. The structural properties of the prepared nanocomposite were characterized by X-ray diffraction, field emission scanning electron microscopy, Fourier transform infrared, photoluminescence spectroscopy and diffuse reflectance spectra (DRS). From the results obtained, the 11-KPW/TiO2 showed the highest photocatalytic activity. Photoluminescence analysis for all synthesized samples showed that the 11-KPW/TiO2 had the lowest intensity and recombination rate of photogenerated electron and holes. Tauc plots of the photocatalysts show that the presence of KPW in the x-KPW/TiO2 nanocomposites reduced the band gap of nanocomposites, but the change in the amount of KPW have not a specific effect on the band gap reduction. It seems that the change in the loading of the KPW is effective on the amount of recombination of electron–hole. The absorption edge of the modified TiO2 showed a red shift into the visible light range. Mott–Schottky plots show a positive slope as expected for n-type semiconductor. The prepared photocatalysts were examined for degradation of DR16 under visible light irradiation. The performance of the photocatalyst was analyzed and modeled by response surface methodology. Optimum conditions were DR16 conc. of 20 mg/L, reaction time 4 h, initial pH (3) and polyoxometalate loading 11 wt%. In order to assess the treatment capacity of the nanophotocatalyst, specific removal rate for the DR16 at all operating conditions were calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. O. Turgay, G. Ersoz, S. Atalay, J. Forss, U. Welander, Sep. Purif. Technol. 79, 26 (2011)

    Article  Google Scholar 

  2. L. Alredha, R.A. Rubaie, R.j. Mhessn, E-J. Chem. 9, 465 (2012)

    Article  Google Scholar 

  3. B. Manu, S. Chaudhari, Process Biochem. 38, 1213 (2003)

    Article  CAS  Google Scholar 

  4. O.R. Lima, A.P. Bazo, D.M.F. Salvadori, C.M. Rech, D.P. Oliveira, G.A. Umbuzeiro, Mutat. Res. Genetic Toxicol. Environ. Mutagen 626, 53 (2007)

    Article  Google Scholar 

  5. T. Platzek, C. Lang, G. Grohmann, U.S. Gi, W. Baltes, Hum. Exp. Toxicol. 18, 552 (1999)

    Article  CAS  Google Scholar 

  6. J. Singh, H. Kaur, M. Rawat, J. Mat. Sci.: Mater. Electron. (2018). https://doi.org/10.1007/s10854-018-9501-6

    Article  Google Scholar 

  7. I.K. Konstantinou, T.A. Albanis, Appl. Catal. B: Environ. 49, 1 (2004)

    Article  CAS  Google Scholar 

  8. M. Muruganandham, R.P.S. Suri, Sh Jafari, M. Sillanpää, J.G. Lee, J.J. Wu, M. Swaminathan, Int. J. Photoenergy. 2014, Article ID821674 (2014). https://doi.org/10.1155/2014/821674

    Article  CAS  Google Scholar 

  9. M. Sohrabi, M. Ghavami, J. Hazard. Mater. 153, 1235 (2008)

    Article  CAS  Google Scholar 

  10. S.M. Ghoreishian, Kh Badii, M. Norouzi, A. Rashidi, M. Montazer, M. Sadeghi, M. Vafaee, J. Taiwan Inst. Chem. Eng. 5, 2436 (2014)

    Article  Google Scholar 

  11. E.C. Ilinoiu, R. Pode, F. Manea, L.A. Colar, A. Jakab, C. Orha, C. Ratiu, C. Lazau, P. Sfarloaga, J. Taiwan Inst. Chem. Eng. 44, 270 (2013)

    Article  CAS  Google Scholar 

  12. P. Nyamukamba, L. Tichagwa, O. Okoh, L. Petrik, Mater. Sci. Semicond. Process. 76, 25 (2018)

    Article  CAS  Google Scholar 

  13. R. Mohammadi, M. Mohammadi, Desalination Water. Treat. 57, 11317 (2015)

    Article  Google Scholar 

  14. K. Kalyanasundaram, M. GratzeCoord, Chem. Rev. 177, 347 (1998)

    CAS  Google Scholar 

  15. A. Taufik, A. Albert, R. Saleh, J. Photochem. Photobiol. A 344, 149 (2017)

    Article  CAS  Google Scholar 

  16. D. Bahnemann, V. Etacheri, C.D. Valentin, J. Schneider, S.C. Pillai, J. Photochem. Photobiol. C 25, 1 (2015)

    Article  Google Scholar 

  17. M. Taghdiri, Int. J. Photoenergy (2017) https://doi.org/10.1155/2017/8575096

    Article  Google Scholar 

  18. C. Sijing, G. Qiang, Sh Hairu, L. Xia, Adv. Mater. Res. 1073–1076, 202 (2014)

    Google Scholar 

  19. E. Rafiee, E. Noori, A.A. Zinatizadeh, H. Zanganeh, RSC. Adv. 6, 96554 (2016)

    Article  CAS  Google Scholar 

  20. P. Lei, Ch Chen, J. Yang, W. Ma, Environ. Sci. Technol. 39, 8466 (2005)

    Article  CAS  Google Scholar 

  21. Y. Huang, Zh Yang, Sh Yang, Y. Xu, JAN 2, 146 (2017)

    Article  Google Scholar 

  22. I.K. Song, M.A. Barteau, J. Mol. Catal. A 212, 229 (2004)

    Article  CAS  Google Scholar 

  23. Ch Gu, C. Shannon, J. Mol. Catal. A 262, 185 (2007)

    Article  CAS  Google Scholar 

  24. H.Y. Yang, S.F. Yu, Sh.P. Lau, X. Zhang, D.D. Sun, G. Jun, Small 5, 2260 (2009)

    Article  CAS  Google Scholar 

  25. Zh. Sun, F. Li, M. Zhao, L. Xu, Sh. Fang, Electrochem. Commun. 30, 38 (2013)

    Article  Google Scholar 

  26. W. Tana, L. Luo, Y. Zheng, V. Jegatheesan, L. Shub, Sh Zhang, M. Yang, H. Wang, Process. Saf. Environ. 104, 558 (2016)

    Article  Google Scholar 

  27. E. Rafiee, E. Noori, A.A. Zinatizadeh, H. Zangeneh, Mat. Sci. Semicon. Proc. 83, 115 (2018)

    Article  CAS  Google Scholar 

  28. K. Li, Y. Guo, F. Ma, H. Li, L. Chen, Y. Guo, Catal. Commun. 11, 839 (2010)

    Article  CAS  Google Scholar 

  29. E. Rafiee, S. Eavani, J. Mol. Catal. A 373, 30 (2013)

    Article  CAS  Google Scholar 

  30. T. Bezrodna, T. Gavrilko, G. Puchkovska, V. Shimanovska, J. Baran, M. Marchewka, J. Mol. Struct. 614, 315 (2002)

    Article  CAS  Google Scholar 

  31. E. Noori, N. Mir, M. Salavati-Niasari, T. Gholami, M. Masjedi-Arani, J. Sol-Gel. Sci. Technol. 69, 544 (2014)

    Article  CAS  Google Scholar 

  32. N. Zhang, D. Chen, F. Niu, S. Wang, L. Qin, Y. Huang, Sci. Rep. 6, 26467 (2016)

    Article  CAS  Google Scholar 

  33. Z. Wang, J. Li, F. Tang, J. Lin, Zh. Jin, RSC Adv. 7, 23535 (2017)

    Article  CAS  Google Scholar 

  34. W. Smith, T. Kuykendall, Y. Zhao, J. Zhang, Adv. Funct. Mater. 19, 1849 (2009)

    Article  Google Scholar 

  35. H. Zangeneh, A.A. Zinatizadeh, M. Feyzi, S. Zinadini, D.W. Bahnemann, Mater. Sci. Semicond. Process 75, 193 (2018)

    Article  CAS  Google Scholar 

  36. A.R. Soleymani, R. Chahardoli, M. Kaykhai, J. Ind. Eng. Chem. 25, 90 (2016)

    Article  Google Scholar 

  37. J. Saien, M. Asgari, A.R. Soleymani, N. Taghavinia, Chem. Eng. J. 151, 295 (2009)

    Article  CAS  Google Scholar 

  38. S. Boumazaa, F. Kaouaha, D. Hamanea, M. Trari, S. Omeiri, Z. Bendjama, J. Mol. Catal. A 393, 156 (2014)

    Article  Google Scholar 

  39. F. Changgen, Zh. Xiaoxi, L. Xia, J. Rare Earth 27, 717 (2009)

    Article  Google Scholar 

  40. Sh. Gao, R. Cao, J. Lu, G. Li, M. Cao, H. Li, H. Yang, J. Mater. Chem. 19, 4157 (2009)

    Article  CAS  Google Scholar 

  41. H. Jin, Q. Wu, W. Pang, J. Hazard. Mater. 141, 123 (2007)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Razi University Research Council and Iran National Science Foundation (INSF) for support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ezzat Rafiee.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rafiee, E., Noori, E., Zinatizadeh, A.A. et al. A new visible driven nanocomposite including Ti-substituted polyoxometalate/TiO2: synthesis, characterization, photodegradation of azo dye process optimization by RSM and specific removal rate calculations. J Mater Sci: Mater Electron 29, 20668–20679 (2018). https://doi.org/10.1007/s10854-018-0205-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-0205-8

Navigation