Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 24, pp 20658–20667 | Cite as

Characterization of the structural, magnetic and magnetocaloric properties of double perovskite La1.95Sr0.05BMnO6 (B = Ni and Co)

  • N. Ouled NasserEmail author
  • A. Ezaami
  • M. Koubaa
  • W. Cheikhrouhou-Kaoubaa
  • A. Cheikhrouhou


An exhaustive study of structural, magnetic and magnetocaloric properties on La1.95Sr0.05BMnO6 (B = Ni and Co) double perovskite were performed. The samples were prepared by the sol–gel method. The crystallographic structure was studied by the X-ray diffraction patterns and Rietveld refinement which revealed that all samples crystallize in a monoclinic structure with P21/n space group. The magnetic behaviors of these double perovskite have been studied in detail. For La1.95Sr0.05NiMnO6, the M(T) curves exhibit double magnetization transition temperature at 68 K and 266 K which can be ascribed to Ni3+–O–Mn3+ and Ni2+–O–Mn4+ superexchange interaction, respectively. However, unique magnetic transition has been observed for the La1.95Sr0.05CoMnO6 double perovskite at 210 K due to Co2+–O–Mn4+ superexchange interaction. A deep investigation based on the Landau Theory and Arrot analysis confirmed a second order ferromagnetic phase transition for both samples. Besides, the magnetocaloric behaviors of these new samples have been studied by analysis the magnetic entropy change. This latter reached maximum values of 1.01 and 1.35 J/kg/K for La1.95Sr0.05NiMnO6 and La1.95Sr0.05CoMnO6, respectively, under µ0H = 5 T. Moreover, the relative cooling power values for La1.95Sr0.05NiMnO6 and La1.95Sr0.05CoMnO6 are found to be 94 J/kg and 116 J/kg, respectively, under µ0H = 5 T. Based on the obtained ΔSM data, we have also described the universal master curve for (ΔSM/\(\Delta S_{M}^{{\hbox{max} }}\)) versus rescaled temperature to confirm the order magnetic phase transition. Interestingly, all the ΔSM(T, H) data points are collapsed into a universal curve in the whole temperature range. The significant values of relative cooling power for both samples suggest that they might be an interesting candidate for exploring a new kind of magnetic refrigerants.



This work has been supported by the Tunisian Ministry of Higher Education and Scientific Research.


  1. 1.
    K.A. Gschneidner Jr., V.K. Pecharsky, A.O. Tsokol, Rep. Prog. Phys. 68, 1479 (2005)CrossRefGoogle Scholar
  2. 2.
    V.K. Pecharsky, K.A. Gschneidner Jr., Phys. Rev. Lett. 78, 4494 (1997)CrossRefGoogle Scholar
  3. 3.
    O. Tegus, E. Brück, K.H.J. Buschow, F.R. de Boer, Nature 415, 150 (2002)CrossRefGoogle Scholar
  4. 4.
    M. Moumen, A. Mehri, W.C. Koubaa, M. Koubaa, A. Cheikhrouhou, J. Alloys Compd. 509, 9084 (2011)CrossRefGoogle Scholar
  5. 5.
    D.L. Rocco, A.A. Coelho, S. Gama, de M.C. Santos, J. Appl. Phys. 113, 113907 (2013)CrossRefGoogle Scholar
  6. 6.
    I. Hussain, M.S. Anwar, S.N. Khan, J.W. Kim, K.C. Chung, B.H. Koo, Ceram. Int. 43, 10080 (2017)CrossRefGoogle Scholar
  7. 7.
    I. Hussain, M.S. Anwar, J.W. Kim, K.C. Chung, B.H. Koo, Ceram. Int. 42, 13098 (2016)CrossRefGoogle Scholar
  8. 8.
    S. Ravi, C. Senthilkumar, Mater. Lett. 164, 124 (2016)CrossRefGoogle Scholar
  9. 9.
    Y. Guo, L. Shi, S. Zhou, J. Zhao, S. Wei, J. Supercond. Nov. Magn. 26, 3287 (2013)CrossRefGoogle Scholar
  10. 10.
    S.H. Oh, H.Y. Choi, J.Y. Moon, M.K. Kim, Y. Jo, N. Lee, Y.J. Choi, J. Phys. D 48, 445001 (2015)CrossRefGoogle Scholar
  11. 11.
    W. Liu, L. Shi, S. Zhou, J. Zhao, Y. Li, Y. Guo, J. Phys. D 47, 485003 (2014)CrossRefGoogle Scholar
  12. 12.
    J.K. Murthy, K.D. Chandrasekhar, H.C. Wu, H.D. Yang, J.Y. Lin, A. Venimadhav, J. Phys. 28, 086003 (2016)Google Scholar
  13. 13.
    T. Saha-Dasgupta, J. Supercond. Nov. Magn. 26 (2013) 1991Google Scholar
  14. 14.
    Y. Mao, J. Parsons, J.S. McCloy, Nanoscale 5, 4720 (2013)CrossRefGoogle Scholar
  15. 15.
    M.P. Singh, K.D. Truong, S. Jandl, P. Fournier, J. Appl. Phys. 107, 09D917 (2010)CrossRefGoogle Scholar
  16. 16.
    T. Roisnel, J. Rodriguez-Carvajal, Computer Program FULLPROF. LLB-LCSIM (2003)Google Scholar
  17. 17.
    C. Shi, Y. Hao, Z. Hu, J. Phys. D 44, 245405 (2011)CrossRefGoogle Scholar
  18. 18.
    D.A.B. Barbosa, M.W. Lufaso, H. Reichlova, X. Marti, M.V.S. Rezende, A.P. Maciel, C.W.A. Paschoal, J. Alloys Compd. 11, 099 (2015)Google Scholar
  19. 19.
    R. Yadav, S. Elizabeth, J. Appl. Phys. 117, 053902 (2015)CrossRefGoogle Scholar
  20. 20.
    I.A. Gorodea, Acta Chem. Iasi 22, 145 (2014)CrossRefGoogle Scholar
  21. 21.
    H. Lin, X.X. Shi, X.M. Chen, J. Alloys Compds. 709, 772 (2017)CrossRefGoogle Scholar
  22. 22.
    J.B. Goodenough, P.M. Raccah, J. Appl. Phys. 36, 1031 (1965)CrossRefGoogle Scholar
  23. 23.
    R.D. Shannon, Acta Crystallogr. A 32, 751 (1976)CrossRefGoogle Scholar
  24. 24.
    D. Serrate, J.M. De Teresa, M.R. Ibarra, J. Phys. Condens. Mater. 19, 023201 (2007)CrossRefGoogle Scholar
  25. 25.
    Taylor, Wiley, New York. 1961Google Scholar
  26. 26.
    D. Choudhury, P. Mandal, R. Mathieu, A. Hazarika, S. Rajan, A. Sundaresan, U.V. Waghmare, R. Knut, O. Karis, P. Nordblad, D.D. Sarma, Phys. Rev. Lett. 108, 127201 (2012)CrossRefGoogle Scholar
  27. 27.
    S.M. Zhou, Y.Q. Guo, J.Y. Zhao, S.Y. Zhao, L. Shi, Appl. Phys. Lett. 96, 262507 (2010)CrossRefGoogle Scholar
  28. 28.
    R.X. Silva, A.S. de Menezes, R.M. Almeida, R.L. Moreira, R. Paniago, X. Marti, H. Reichlova, M. Maryško, M. Vinicius, dos S. Rezende, C.W.A. Paschoal, J. Alloys Compd. 661, 541 (2016)CrossRefGoogle Scholar
  29. 29.
    P.N. Lekshmi, G.R. Raji, M. Vasundhara, M.R. Varma, S. Savitha Pillai, M. Valant, J. Mater. Chem. C. 1, 6565 (2013)CrossRefGoogle Scholar
  30. 30.
    B.K. Banerjee, Phys. Lett. 12, 16 (1964)CrossRefGoogle Scholar
  31. 31.
    R.D. McMichael, J.J. Ritter, R.D. Shull, J. Appl. Phys. 73, 6946 (1993)CrossRefGoogle Scholar
  32. 32.
    T.V. Manh, T.A. Ho, T.D. Thanh, T.L. Phan, M.H. Phan, S.-C. Yu, Trans. Magn. 51, 2400304 (2015)Google Scholar
  33. 33.
    M. Balli, P. Fournier, S. Jandl, K.D. Truong, M.M. Gospodinov, J. Appl. Phys. 116, 073907 (2014)CrossRefGoogle Scholar
  34. 34.
    T. Chakraborty, H. Nhalil, R. Yadav, A.A. Wagh, S. Elizabeth, J. Magn. Magn. Mater. 428, 59 (2017)CrossRefGoogle Scholar
  35. 35.
    K.P. Shindea, S.S. Pawar, N.G. Deshpande, J.M. Kim, Y.P. Lee, S.H. Pawar, Mater. Chem. Phys. 129, 180 (2011)CrossRefGoogle Scholar
  36. 36.
    R. Tetean, I.G. Deac, E. Burzo, A. Bezergheanu, J. Magn. Magn. Mater. 320, 179 (2008)CrossRefGoogle Scholar
  37. 37.
    L.V. Bau, N.V. Khiem, N.X. Phuc, L.V. Hong, D.N.H. Nam, J. Phys. 187, 012073 (2009)Google Scholar
  38. 38.
    V. Franco, A. Conde, Int. J. Refrig. 33, 465 (2010)CrossRefGoogle Scholar
  39. 39.
    J.S. Amaral, M.S. Reis, V.S. Amaral, T.M. Mendonca, J.P. Araujo, M.A. Sa, P.B. Tavares, J.M. Vieira, J. Magn. Magn. Mater. 290, 686 (2005)CrossRefGoogle Scholar
  40. 40.
    S.V. Amaral, S.J. Amaral, J. Magn. Magn. Mater. 2104, 272 (2004)Google Scholar
  41. 41.
    R. Venkatesh, M. Pattabiraman, K. Sethupathi, G. Rangarajan, S. Angappane, J.G. Park, J. Appl. Phys. 103, 319 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • N. Ouled Nasser
    • 1
    Email author
  • A. Ezaami
    • 1
  • M. Koubaa
    • 1
    • 2
  • W. Cheikhrouhou-Kaoubaa
    • 1
  • A. Cheikhrouhou
    • 1
  1. 1.Digital Research Center of SfaxSfaxTunisia
  2. 2.Institut Supérieur de Biotechnologie de SfaxUniversité de SfaxSfaxTunisia

Personalised recommendations