Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 24, pp 20650–20657 | Cite as

Chemical, morphological, structural, optical, and magnetic properties of Zn1−xNdxO nanoparticles

  • B. Poornaprakash
  • U. Chalapathi
  • S. V. Prabhakar Vattikuti
  • A. Balakrishna
  • H. C. Swart
  • Youngsuk Suh
  • Si-Hyun ParkEmail author


In the present investigation, we made an endeavor to fabricate the ZnO nanoparticles and achieved the tunable properties with Nd doping. The Nd-doped ZnO nanoparticles were characterized via X-ray diffraction (XRD), Raman, and X-ray photoelectron spectroscopy (XPS) studies that confirmed the successful doping of Nd ions in the ZnO crystal lattice without amending its hexagonal phase. The particle morphology revealed nearly spherical particles with uniform size distribution. The band gap of these samples was determined using diffuse-reflectance spectra (DRS) and was found to vary from 3.17 to 3.21 eV with increasing Nd concentration. A broad and intense emission band at 1083 nm for Nd doped ZnO nanoparticles is observed and is assigned to corresponding emission transition 4F3/2 → 4I11/2 of Nd3+ ions. Furthermore, the magnetic studies indicate that the Nd doping altered the magnetic behavior of nanocrystalline ZnO particles from diamagnetic to ferromagnetic at 300 K and that the magnetization of these samples decreased with increasing Nd concentration. The tunable optical band gap as well as room-temperature ferromagnetism of these samples may find applications in both optoelectronics and spintronics.


  1. 1.
    A.A. Bol, R. van Beek, A. Meijerink, On the incorporation of trivalent rare earth ions in II–VI semiconductor nanocrystals. Chem. Mater. 14, 1121 (2002)CrossRefGoogle Scholar
  2. 2.
    T. Dietl, H. Ohno, Dilute ferromagnetic semiconductors: physics and spintronic structures. Rev. Mod. Phys. 86, 187 (2014)CrossRefGoogle Scholar
  3. 3.
    S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S. von Molnar, M.L. Roukes, A.Y. Chtchelkanova, D.M. Treger, Spintronics: a spin-based electronics vision for the future. Science 294, 1488 (2001)CrossRefGoogle Scholar
  4. 4.
    M. Law, L.E. Greene, J.C. Johnson, R. Saykally, P. Yang, Nanowire dye-sensitized solar cells. Nat. Mater. 4, 455 (2005)CrossRefGoogle Scholar
  5. 5.
    M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, Room-temperature ultraviolet nanowire nanolasers. Science 292, 1897 (2001)CrossRefGoogle Scholar
  6. 6.
    M.A. Garcia, E. Fernandez Pinel, J. de la Venta, A. Quesada, V. Bouzas, J.F. Fernández, J.J. Romero, M.S. Martín González, J.L. Costa-Kräme, Sources of experimental errors in the observation of nanoscale magnetism. J. Appl. Phys. 105, 013925 (2009)CrossRefGoogle Scholar
  7. 7.
    Q. Chena, J. Wang, Ferromagnetism in Nd-doped ZnO nanowires and the influence of oxygen vacancies: ab initio calculations. Phys. Chem. Chem. Phys. 15, 17793 (2013)CrossRefGoogle Scholar
  8. 8.
    E. Manikandan, G. Kavitha, J. Kennedy, Epitaxial zincoxide, graphene oxide composite thin-films by laser technique for micro-Raman and enhanced field emission study. Ceram. Int. 40, 16065 (2014)CrossRefGoogle Scholar
  9. 9.
    E. Manikandan, V. Murugan, G. Kavitha, P. Babu, M. Maaza, Nanoflower rod, wire-like structures of dual metal (Al and Cr) doped ZnO thin films: structural, optical and electronic properties. Mater. Lett 131, 225 (2014)CrossRefGoogle Scholar
  10. 10.
    M. Poloju, N. Jayababu, E. Manikandan, M.V. Ramana Reddy, Enhancement of the isopropanol gas sensing performance of SnO2/ZnO core/shell nanocomposites. J. Mater. Chem. C 5, 2662 (2017)CrossRefGoogle Scholar
  11. 11.
    G. Kavitha, K. Thanigai Arul, P. Babu, Enhanced acetone gas sensing behavior of n-ZnO/p-NiO nanostructures. J. Mater. Sci. Mater. Electron. 29, 6666 (2018)CrossRefGoogle Scholar
  12. 12.
    A.H. Shah, M. Basheer Ahamed, E. Manikandan, R. Chandramohan, M. Iydroose, Magnetic, optical and structural studies on Ag doped ZnO nanoparticles. J. Mater. Sci.: Mater. Electron. 24, 2302 (2013)Google Scholar
  13. 13.
    A. Muthukumar, D. Arivuoli, E. Manikandan, M. Jayachandran, Enhanced violet photoemission of nanocrystalline fluorine doped zinc oxide (FZO) thin films. Opt. Mater. 47, 88 (2015)CrossRefGoogle Scholar
  14. 14.
    A. Sobhani-Nasab, M. Rahimi-Nasrabadi, H.R. Naderi, V. Pourmohamadian, F. Ahmadi, M.R. Ganjali, H. Ehrlic, Sonochemical synthesis of terbium tungstate for developing high power supercapacitors with enhanced energy densities. Ultrason. Sonochem. 45, 189 (2018)CrossRefGoogle Scholar
  15. 15.
    M. Eghbali-Arani, A. Sobhani-Nasa, M. Rahimi-Nasrabadi, F. Ahmadi, S. Pourmasoud, Ultrasound-assisted synthesis of YbVO4 nanostructure and YbVO4/CuWO4 nanocomposites for enhanced photocatalytic degradation of organic dyes under visible light. Ultrason. Sonochem. 43, 120 (2018)CrossRefGoogle Scholar
  16. 16.
    S. Pourmasoud, A. Sobhani-Nasab, M. Behpour, M. Rahimi-Nasrabadi, F. Ahmadi, Investigation of optical properties and the photocatalytic activity of synthesized YbYO4 nanoparticles and YbVO4/NiWO4 nanocomposites by polymeric capping agents. J. Mol. Struct. 1157, 607 (2018)CrossRefGoogle Scholar
  17. 17.
    A. Sobhani-Nasab, A. Ziarati, M. Rahimi-Nasrabadi, M.R. Ganjali, A. Badiei, Five-component domino synthesis of tetrahydropyridines using hexagonal PbCrxFe12–xO19 as efficient magnetic nanocatalyst. Res. Chem. Intermed. 43, 6155 (2017)CrossRefGoogle Scholar
  18. 18.
    S.S. Hosseinpour-Mashkani, A. Sobhani-Nasab, Investigation the effect of temperature and polymeric capping agents on the size and photocatalytic properties of NdVO4 nanoparticles. J. Mater. Sci. Mater. Electron. 28, 16459 (2017)CrossRefGoogle Scholar
  19. 19.
    M. Salavati-Niasari, F. Soofivand, A. Sobhani-Nasab, M. Shakouri-Arani, M. Hamadanian, S. Bagheri, Facile synthesis and characterization of CdTiO3 nanoparticles by Pechini sol–gel method. J. Mater. Sci. Mater. Electron. 28, 14965 (2017)CrossRefGoogle Scholar
  20. 20.
    M. Eghbali-Arani, A. Sobhani-Nasab, M. Rahimi-Nasrabadi, S. Pourmasoud, Green synthesis and characterization of SmVO4 nanoparticles in the presence of carbohydrates as capping agents with investigation of visible-light photocatalytic properties. J. Electron. Mater. 47, 3757 (2018)CrossRefGoogle Scholar
  21. 21.
    G. Vijayaprasath, R. Murugan, S. Palanisamy, N.M. Prabhu, T. Mahalingam, Y. Hayakawa, G. Ravi, Structural, optical and antibacterial activity studies of neodymium doped ZnO nanoparticles. J. Mater. Sci. Mater. Electron. 26, 7564 (2015)CrossRefGoogle Scholar
  22. 22.
    A.S.H. Hameed, C. Karthikeyan, A. ParveezAhamed, N. Thajuddin, N.S. Alharbi, S.A. Alharbi, G. Rav, In vitro antibacterial activity of ZnO and Nd doped ZnO nanoparticles against ESBL producing Escherichia coli and Klebsiella pneumonia. Sci Rep. 6, 24312 (2016)CrossRefGoogle Scholar
  23. 23.
    B. Poornaprakash, U. Chalapathi, B. Purusottam Reddy, P.T. Poojitha, S.-H. Park, Enhanced ferromagnetism in ZnGdO nanoparticles induced by Al co-doping. J. Alloys Compd. 705, 51 (2017)CrossRefGoogle Scholar
  24. 24.
    H. Zhou, L. Chen, V. Malik, C. Knies, D.M. Hofmann, K.P. Bhatti, S. Chaudhary, P.J. Klar, W. Heimbrodt, C. Klingshirn, H. Kalt, Raman studies of ZnO:Co thin films. Phys. Status Solidi (a) 204, 112 (2007)CrossRefGoogle Scholar
  25. 25.
    A.D. Sontakke, K. Annapurna, Spectroscopic properties and concentration effects on luminescence behavior of Nd3+ doped zinc-boro-bismuthate glasses. Mater. Chem. Phys. 137, 916 (2013)CrossRefGoogle Scholar
  26. 26.
    M. Balestrieri, S. Colis, M. Gallart, G. Ferblantier, D. Muller, P. Gilliot, P. Bazylewski, G.S. Chang, A. Slaouib, A. Dinia, Efficient energy transfer from ZnO to Nd3+ ions in Nd-doped ZnO films deposited by magnetronreactive sputtering. J. Mater. Chem. C 2, 9182 (2014)CrossRefGoogle Scholar
  27. 27.
    Y. Liu, W. Luo, R. Li, X. Chen, Optical properties of Nd3+ ion-doped ZnO nanocrystals. J. Nanosci. Nanotechnol. 10, 1871 (2010)CrossRefGoogle Scholar
  28. 28.
    J.H. Zheng, J.L. Song, Z. Zhao, Q. Jiang, J.S. Lian, Optical and magnetic properties of Nd-doped ZnO nanoparticles. Cryst. Res. Technol. 47, 713 (2012)CrossRefGoogle Scholar
  29. 29.
    S. Ghose, T. Rakshit, R. Ranganathan, D. Jana, Role of Zn-interstitial defect states on d0 ferromagnetism of mechanically milled ZnO nanoparticles. RSC Adv. 5, 99766 (2015)CrossRefGoogle Scholar
  30. 30.
    K. Rainey, J. Chess, J. Eixenberger, D.A. Tenne, C.B. Hanna, A. Punnoose, Defect induced ferromagnetism in undoped ZnO nanoparticles. J. Appl. Phys. 115, 17D727 (2014)CrossRefGoogle Scholar
  31. 31.
    G. Vijayaprasath, R. Murugan, T. Mahalingam, Y. Hayakawa, G. Ravi, Enhancement of ferromagnetic property in rare earth neodymium doped ZnO nanoparticles. Ceram. Int. 41, 10607 (2015)CrossRefGoogle Scholar
  32. 32.
    D. Wang, Q. Chen, G. Xing, J. Yi, S.R. Bakaul, J. Ding, J. Wang, T. Wu, Robust room-temperature ferromagnetism with giant anisotropy in Nd-doped ZnO nanowire arrays. Nano Lett. 12, 3994 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • B. Poornaprakash
    • 1
  • U. Chalapathi
    • 1
  • S. V. Prabhakar Vattikuti
    • 2
  • A. Balakrishna
    • 3
  • H. C. Swart
    • 3
  • Youngsuk Suh
    • 1
  • Si-Hyun Park
    • 1
    Email author
  1. 1.Department of Electronic EngineeringYeungnam UniversityGyeongsanSouth Korea
  2. 2.School of Mechanical EngineeringYeungnam UniversityGyeongsanSouth Korea
  3. 3.Department of PhysicsUniversity of the Free StateBloemfonteinSouth Africa

Personalised recommendations