Skip to main content
Log in

Chemical, morphological, structural, optical, and magnetic properties of Zn1−xNdxO nanoparticles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the present investigation, we made an endeavor to fabricate the ZnO nanoparticles and achieved the tunable properties with Nd doping. The Nd-doped ZnO nanoparticles were characterized via X-ray diffraction (XRD), Raman, and X-ray photoelectron spectroscopy (XPS) studies that confirmed the successful doping of Nd ions in the ZnO crystal lattice without amending its hexagonal phase. The particle morphology revealed nearly spherical particles with uniform size distribution. The band gap of these samples was determined using diffuse-reflectance spectra (DRS) and was found to vary from 3.17 to 3.21 eV with increasing Nd concentration. A broad and intense emission band at 1083 nm for Nd doped ZnO nanoparticles is observed and is assigned to corresponding emission transition 4F3/2 → 4I11/2 of Nd3+ ions. Furthermore, the magnetic studies indicate that the Nd doping altered the magnetic behavior of nanocrystalline ZnO particles from diamagnetic to ferromagnetic at 300 K and that the magnetization of these samples decreased with increasing Nd concentration. The tunable optical band gap as well as room-temperature ferromagnetism of these samples may find applications in both optoelectronics and spintronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. A.A. Bol, R. van Beek, A. Meijerink, On the incorporation of trivalent rare earth ions in II–VI semiconductor nanocrystals. Chem. Mater. 14, 1121 (2002)

    Article  CAS  Google Scholar 

  2. T. Dietl, H. Ohno, Dilute ferromagnetic semiconductors: physics and spintronic structures. Rev. Mod. Phys. 86, 187 (2014)

    Article  CAS  Google Scholar 

  3. S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S. von Molnar, M.L. Roukes, A.Y. Chtchelkanova, D.M. Treger, Spintronics: a spin-based electronics vision for the future. Science 294, 1488 (2001)

    Article  CAS  Google Scholar 

  4. M. Law, L.E. Greene, J.C. Johnson, R. Saykally, P. Yang, Nanowire dye-sensitized solar cells. Nat. Mater. 4, 455 (2005)

    Article  CAS  Google Scholar 

  5. M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, Room-temperature ultraviolet nanowire nanolasers. Science 292, 1897 (2001)

    Article  CAS  Google Scholar 

  6. M.A. Garcia, E. Fernandez Pinel, J. de la Venta, A. Quesada, V. Bouzas, J.F. Fernández, J.J. Romero, M.S. Martín González, J.L. Costa-Kräme, Sources of experimental errors in the observation of nanoscale magnetism. J. Appl. Phys. 105, 013925 (2009)

    Article  Google Scholar 

  7. Q. Chena, J. Wang, Ferromagnetism in Nd-doped ZnO nanowires and the influence of oxygen vacancies: ab initio calculations. Phys. Chem. Chem. Phys. 15, 17793 (2013)

    Article  Google Scholar 

  8. E. Manikandan, G. Kavitha, J. Kennedy, Epitaxial zincoxide, graphene oxide composite thin-films by laser technique for micro-Raman and enhanced field emission study. Ceram. Int. 40, 16065 (2014)

    Article  CAS  Google Scholar 

  9. E. Manikandan, V. Murugan, G. Kavitha, P. Babu, M. Maaza, Nanoflower rod, wire-like structures of dual metal (Al and Cr) doped ZnO thin films: structural, optical and electronic properties. Mater. Lett 131, 225 (2014)

    Article  CAS  Google Scholar 

  10. M. Poloju, N. Jayababu, E. Manikandan, M.V. Ramana Reddy, Enhancement of the isopropanol gas sensing performance of SnO2/ZnO core/shell nanocomposites. J. Mater. Chem. C 5, 2662 (2017)

    Article  CAS  Google Scholar 

  11. G. Kavitha, K. Thanigai Arul, P. Babu, Enhanced acetone gas sensing behavior of n-ZnO/p-NiO nanostructures. J. Mater. Sci. Mater. Electron. 29, 6666 (2018)

    Article  CAS  Google Scholar 

  12. A.H. Shah, M. Basheer Ahamed, E. Manikandan, R. Chandramohan, M. Iydroose, Magnetic, optical and structural studies on Ag doped ZnO nanoparticles. J. Mater. Sci.: Mater. Electron. 24, 2302 (2013)

    CAS  Google Scholar 

  13. A. Muthukumar, D. Arivuoli, E. Manikandan, M. Jayachandran, Enhanced violet photoemission of nanocrystalline fluorine doped zinc oxide (FZO) thin films. Opt. Mater. 47, 88 (2015)

    Article  Google Scholar 

  14. A. Sobhani-Nasab, M. Rahimi-Nasrabadi, H.R. Naderi, V. Pourmohamadian, F. Ahmadi, M.R. Ganjali, H. Ehrlic, Sonochemical synthesis of terbium tungstate for developing high power supercapacitors with enhanced energy densities. Ultrason. Sonochem. 45, 189 (2018)

    Article  CAS  Google Scholar 

  15. M. Eghbali-Arani, A. Sobhani-Nasa, M. Rahimi-Nasrabadi, F. Ahmadi, S. Pourmasoud, Ultrasound-assisted synthesis of YbVO4 nanostructure and YbVO4/CuWO4 nanocomposites for enhanced photocatalytic degradation of organic dyes under visible light. Ultrason. Sonochem. 43, 120 (2018)

    Article  CAS  Google Scholar 

  16. S. Pourmasoud, A. Sobhani-Nasab, M. Behpour, M. Rahimi-Nasrabadi, F. Ahmadi, Investigation of optical properties and the photocatalytic activity of synthesized YbYO4 nanoparticles and YbVO4/NiWO4 nanocomposites by polymeric capping agents. J. Mol. Struct. 1157, 607 (2018)

    Article  CAS  Google Scholar 

  17. A. Sobhani-Nasab, A. Ziarati, M. Rahimi-Nasrabadi, M.R. Ganjali, A. Badiei, Five-component domino synthesis of tetrahydropyridines using hexagonal PbCrxFe12–xO19 as efficient magnetic nanocatalyst. Res. Chem. Intermed. 43, 6155 (2017)

    Article  CAS  Google Scholar 

  18. S.S. Hosseinpour-Mashkani, A. Sobhani-Nasab, Investigation the effect of temperature and polymeric capping agents on the size and photocatalytic properties of NdVO4 nanoparticles. J. Mater. Sci. Mater. Electron. 28, 16459 (2017)

    Article  CAS  Google Scholar 

  19. M. Salavati-Niasari, F. Soofivand, A. Sobhani-Nasab, M. Shakouri-Arani, M. Hamadanian, S. Bagheri, Facile synthesis and characterization of CdTiO3 nanoparticles by Pechini sol–gel method. J. Mater. Sci. Mater. Electron. 28, 14965 (2017)

    Article  CAS  Google Scholar 

  20. M. Eghbali-Arani, A. Sobhani-Nasab, M. Rahimi-Nasrabadi, S. Pourmasoud, Green synthesis and characterization of SmVO4 nanoparticles in the presence of carbohydrates as capping agents with investigation of visible-light photocatalytic properties. J. Electron. Mater. 47, 3757 (2018)

    Article  CAS  Google Scholar 

  21. G. Vijayaprasath, R. Murugan, S. Palanisamy, N.M. Prabhu, T. Mahalingam, Y. Hayakawa, G. Ravi, Structural, optical and antibacterial activity studies of neodymium doped ZnO nanoparticles. J. Mater. Sci. Mater. Electron. 26, 7564 (2015)

    Article  CAS  Google Scholar 

  22. A.S.H. Hameed, C. Karthikeyan, A. ParveezAhamed, N. Thajuddin, N.S. Alharbi, S.A. Alharbi, G. Rav, In vitro antibacterial activity of ZnO and Nd doped ZnO nanoparticles against ESBL producing Escherichia coli and Klebsiella pneumonia. Sci Rep. 6, 24312 (2016)

    Article  CAS  Google Scholar 

  23. B. Poornaprakash, U. Chalapathi, B. Purusottam Reddy, P.T. Poojitha, S.-H. Park, Enhanced ferromagnetism in ZnGdO nanoparticles induced by Al co-doping. J. Alloys Compd. 705, 51 (2017)

    Article  CAS  Google Scholar 

  24. H. Zhou, L. Chen, V. Malik, C. Knies, D.M. Hofmann, K.P. Bhatti, S. Chaudhary, P.J. Klar, W. Heimbrodt, C. Klingshirn, H. Kalt, Raman studies of ZnO:Co thin films. Phys. Status Solidi (a) 204, 112 (2007)

    Article  CAS  Google Scholar 

  25. A.D. Sontakke, K. Annapurna, Spectroscopic properties and concentration effects on luminescence behavior of Nd3+ doped zinc-boro-bismuthate glasses. Mater. Chem. Phys. 137, 916 (2013)

    Article  CAS  Google Scholar 

  26. M. Balestrieri, S. Colis, M. Gallart, G. Ferblantier, D. Muller, P. Gilliot, P. Bazylewski, G.S. Chang, A. Slaouib, A. Dinia, Efficient energy transfer from ZnO to Nd3+ ions in Nd-doped ZnO films deposited by magnetronreactive sputtering. J. Mater. Chem. C 2, 9182 (2014)

    Article  CAS  Google Scholar 

  27. Y. Liu, W. Luo, R. Li, X. Chen, Optical properties of Nd3+ ion-doped ZnO nanocrystals. J. Nanosci. Nanotechnol. 10, 1871 (2010)

    Article  CAS  Google Scholar 

  28. J.H. Zheng, J.L. Song, Z. Zhao, Q. Jiang, J.S. Lian, Optical and magnetic properties of Nd-doped ZnO nanoparticles. Cryst. Res. Technol. 47, 713 (2012)

    Article  CAS  Google Scholar 

  29. S. Ghose, T. Rakshit, R. Ranganathan, D. Jana, Role of Zn-interstitial defect states on d0 ferromagnetism of mechanically milled ZnO nanoparticles. RSC Adv. 5, 99766 (2015)

    Article  CAS  Google Scholar 

  30. K. Rainey, J. Chess, J. Eixenberger, D.A. Tenne, C.B. Hanna, A. Punnoose, Defect induced ferromagnetism in undoped ZnO nanoparticles. J. Appl. Phys. 115, 17D727 (2014)

    Article  Google Scholar 

  31. G. Vijayaprasath, R. Murugan, T. Mahalingam, Y. Hayakawa, G. Ravi, Enhancement of ferromagnetic property in rare earth neodymium doped ZnO nanoparticles. Ceram. Int. 41, 10607 (2015)

    Article  CAS  Google Scholar 

  32. D. Wang, Q. Chen, G. Xing, J. Yi, S.R. Bakaul, J. Ding, J. Wang, T. Wu, Robust room-temperature ferromagnetism with giant anisotropy in Nd-doped ZnO nanowire arrays. Nano Lett. 12, 3994 (2012)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Si-Hyun Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poornaprakash, B., Chalapathi, U., Vattikuti, S.V.P. et al. Chemical, morphological, structural, optical, and magnetic properties of Zn1−xNdxO nanoparticles. J Mater Sci: Mater Electron 29, 20650–20657 (2018). https://doi.org/10.1007/s10854-018-0203-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-0203-x

Navigation