Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 24, pp 20639–20649 | Cite as

A platform for electrochemical sensing of biomolecules based on Europia/reduced graphene oxide nanocomposite

  • Hossein Jafari
  • Mohammad Reza Ganjali
  • Amin Shiralizadeh DezfuliEmail author
  • Elmira Kohan
Article
  • 48 Downloads

Abstract

This study aimed at preparing and evaluating the europium oxide–reduced graphene oxide (rGO) composites. Inorganic nanoparticles anchored onto rGO sheets through a facile sonochemical method. The resultant products were characterized by FT-IR, XRD, SEM. Their activity in biomolecules’ analysis were examined by cyclic voltammetry. The rectified electrodes revealed an incredibly electroactive manner. The obtained progress provided excellent materials for scrutiny of biomolecules. The linear relationship was used in the region of 100–1500 µM ascorbic acid (AA), 50–600 µM dopamine (DA), and 10–700 µM uric acid (UA), between current intensities and concentrations. The detection restrictions (LOD) (S/N = 3) decreased to 8 µM, 1.1 µM and 0.085 µM for AA, DA and UA respectively by differential pulse voltammetry (DPV).

Notes

Acknowledgements

The financial support of this work by Iran National Science Foundation (INSF) and University of Tehran is gratefully acknowledgments.

Supplementary material

10854_2018_202_MOESM1_ESM.docx (26.7 mb)
Supplementary material 1 (DOCX 27377 KB)

References

  1. 1.
    H. Teymourian, A. Salimi, S. Firoozi, A. Korani, S. Soltanian, Electrochim. Acta 143, 196 (2014)CrossRefGoogle Scholar
  2. 2.
    Q. Lian, Z. He, Q. He et al., Anal. Chim. Acta 823, 32 (2014)CrossRefGoogle Scholar
  3. 3.
    L. Xing, Z. Ma, Microchim. Acta 183, 257 (2016)CrossRefGoogle Scholar
  4. 4.
    J. Du, R. Yue, Z. Yao et al., Colloids Surf. A 419, 94 (2013)CrossRefGoogle Scholar
  5. 5.
    A.S. Dezfuli, M.R. Ganjali, P. Norouzi, F. Faridbod, J. Mater. Chem. B 3, 2362 (2015).  https://doi.org/10.1039/c4tb01847h CrossRefGoogle Scholar
  6. 6.
    H. Jafari, M.R. Ganjali, A.S. Dezfuli, F. Faridbod, Appl. Surf. Sci. 427, 496 (2018).  https://doi.org/10.1016/j.apsusc.2017.08.054 CrossRefGoogle Scholar
  7. 7.
    A.S. Dezfuli, M.R. Ganjali, H. Jafari, F. Faridbod, J. Mater. Sci. Mater. Electron. 28, 6176 (2017).  https://doi.org/10.1007/s10854-016-6296-1 CrossRefGoogle Scholar
  8. 8.
    C. Punckt, M.A. Pope, I.A. Aksay, J. Phys. Chem. C 118, 22635 (2014).  https://doi.org/10.1021/jp507238u CrossRefGoogle Scholar
  9. 9.
    B. Kaur, T. Pandiyan, B. Satpati, R. Srivastava (2013) Colloids Surf. B 111, 97.  https://doi.org/10.1016/j.colsurfb.2013.05.023 CrossRefGoogle Scholar
  10. 10.
    D. Joung, V. Singh, S. Park, A. Schulte, S. Seal, S.I. Khondaker, J. Phys. Chem. C 115, 24494 (2011).  https://doi.org/10.1021/jp206485v CrossRefGoogle Scholar
  11. 11.
    D. Joung, V. Singh, S. Park, A. Schulte, S. Seal, S.I. Khondaker, J. Phys. Chem. C 115, 24494 (2011)CrossRefGoogle Scholar
  12. 12.
    H.L. Zou, B.L. Li, H.Q. Luo, N.B. Li, Sens. Actuators B 207, 535 (2015)CrossRefGoogle Scholar
  13. 13.
    M. Ebrahimi, H. Nikoofard, F. Faridbod, A.S. Dezfuli, H. Beigizadeh, P. Norouzi, J. Mater. Sci. Mater. Electron. 28, 16704 (2017).  https://doi.org/10.1007/s10854-017-7583-1 CrossRefGoogle Scholar
  14. 14.
    Z.-S. Wu, G. Zhou, L.-C. Yin, W. Ren, F. Li, H.-M. Cheng, Nano Energy 1, 107 (2012).  https://doi.org/10.1016/j.nanoen.2011.11.001 CrossRefGoogle Scholar
  15. 15.
    A.Shiralizadeh Dezfuli, M.R. Ganjali, P. Norouzi, Mater. Sci. Eng. C 42, 774 (2014).  https://doi.org/10.1016/j.msec.2014.06.012 CrossRefGoogle Scholar
  16. 16.
    D. Zhang, T. Yan, L. Shi, H. Li, J.F. Chiang, J. Alloys Compd. 506, 446 (2010).  https://doi.org/10.1016/j.jallcom.2010.07.026 CrossRefGoogle Scholar
  17. 17.
    V.G. Pol, J.M. Calderon-Moreno, J. Phys. Chem. Lett. 1, 319 (2010).  https://doi.org/10.1021/jz900123s CrossRefGoogle Scholar
  18. 18.
    Y. Li, M. Ge, J. Li, J. Wang, H. Zhang, CrystEngComm 13, 637 (2011).  https://doi.org/10.1039/C003981K CrossRefGoogle Scholar
  19. 19.
    Y. Zhang, Z. Xu, X. Yin, Z. Fang, W. Zhu, H. He, Cryst. Res. Technol. 45, 1183 (2010).  https://doi.org/10.1002/crat.201000342 CrossRefGoogle Scholar
  20. 20.
    L.-X. Zhang, Y.-X. Sun, H.-F. Jiu, Y.-H. Fu, Y.-Z. Wang, J.-Y. Zhang, Chem. Pap. 66, 741 (2012).  https://doi.org/10.2478/s11696-012-0194-7 CrossRefGoogle Scholar
  21. 21.
    C. Fang, Z. Junhu, C. Tieyu et al., Nanotechnology 19, 065607 (2008)CrossRefGoogle Scholar
  22. 22.
    D.C. Marcano, D.V. Kosynkin, J.M. Berlin et al., ACS Nano 4, 4806 (2010).  https://doi.org/10.1021/Nn1006368 CrossRefGoogle Scholar
  23. 23.
    M. Tavakoli, M. Hajimahmoodi, F. Shemirani, A.S. Dezfuli, M. Khanavi, Chromatographia 80, 1423 (2017).  https://doi.org/10.1007/s10337-017-3361-8 CrossRefGoogle Scholar
  24. 24.
    S. Zhu, J. Guo, J. Dong et al., Ultrason. Sonochem. 20, 872 (2013).  https://doi.org/10.1016/j.ultsonch.2012.12.001 CrossRefGoogle Scholar
  25. 25.
    J.H. Bang, K.S. Suslick, Adv. Mater. 22, 1039 (2010).  https://doi.org/10.1002/adma.200904093 CrossRefGoogle Scholar
  26. 26.
    P. Pankaj, Theoretical and Experimental Sonochemistry Involving Inorganic Systems (Springer, New York, 2010)Google Scholar
  27. 27.
    N.T. Thanh, N. Maclean, S. Mahiddine, Chem. Rev. 114, 7610 (2014).  https://doi.org/10.1021/cr400544s CrossRefGoogle Scholar
  28. 28.
    L.H. Jiang, M.G. Yao, B. Liu et al., J. Phys. Chem. C 116, 11741 (2012).  https://doi.org/10.1021/jp3015113 CrossRefGoogle Scholar
  29. 29.
    Q. Ling, M. Yang, R.C. Rao et al., Appl. Surf. Sci. 274, 131 (2013).  https://doi.org/10.1016/j.apsusc.2013.02.129 CrossRefGoogle Scholar
  30. 30.
    D. Lee, J. Seo, LdlS. Valladares, O.Avalos Quispe, C.H.W. Barnes, J. Solid State Chem. 228, 141 (2015).  https://doi.org/10.1016/j.jssc.2015.04.018 CrossRefGoogle Scholar
  31. 31.
    J.-G. Kang, Y. Jung, B.-K. Min, Y. Sohn, Appl. Surf. Sci. 314, 158 (2014).  https://doi.org/10.1016/j.apsusc.2014.06.165 CrossRefGoogle Scholar
  32. 32.
    M. Srivastava, A.K. Das, P. Khanra, M.E. Uddin, N.H. Kim, J.H. Lee, J. Mater. Chem. A 1, 9792 (2013).  https://doi.org/10.1039/c3ta11311f CrossRefGoogle Scholar
  33. 33.
    G. Wang, J.T. Bai, Y.H. Wang, Z.Y. Ren, J.B. Bai, Scr. Mater. 65, 339 (2011).  https://doi.org/10.1016/j.scriptamat.2011.05.001 CrossRefGoogle Scholar
  34. 34.
    A. Jastrzębska, J. Karcz, R. Letmanowski et al., Appl. Surf. Sci. 362, 577 (2016)CrossRefGoogle Scholar
  35. 35.
    S. Bernal, F.J. Botana, R. García, J.M. Rodríguez-Izquierdo, React. Solids 4, 23 (1987).  https://doi.org/10.1016/0168-7336(87)80085-2 CrossRefGoogle Scholar
  36. 36.
    S. Tsujimoto, T. Masui, N. Imanaka (2015) Eur. J. Inorg. Chem. 2015, 1524.  https://doi.org/10.1002/ejic.201403061 CrossRefGoogle Scholar
  37. 37.
    P. Wang, B. Bai, L. Huang, S. Hu, J. Zhuang, X. Wang, Nanoscale 3, 2529 (2011).  https://doi.org/10.1039/C1NR10065C CrossRefGoogle Scholar
  38. 38.
    R.S. Nicholson, Anal. Chem. 37, 1351 (1965)CrossRefGoogle Scholar
  39. 39.
    N. Siraj, G. Grampp, S. Landgraf, K. Punyain, Z. Phys. Chem. 227, 105 (2013).  https://doi.org/10.1524/zpch.2012.0217 CrossRefGoogle Scholar
  40. 40.
    F. Crespi, T. Sharp, N.T. Maidment, C.A. Marsden, Brain Res. 322, 135 (1984)CrossRefGoogle Scholar
  41. 41.
    J. Ping, J. Wu, Y. Wang, Y. Ying, Biosens. Bioelectron. 34, 70 (2012).  https://doi.org/10.1016/j.bios.2012.01.016 CrossRefGoogle Scholar
  42. 42.
    C. Punckt, M.A. Pope, I.A. Aksay, J. Phys. Chem. C 117, 16076 (2013).  https://doi.org/10.1021/jp405142k CrossRefGoogle Scholar
  43. 43.
    M.C. Henstridge, E.J.F. Dickinson, R.G. Compton, Russ. J. Electrochem. 48, 629 (2012).  https://doi.org/10.1134/S1023193512060043 CrossRefGoogle Scholar
  44. 44.
    J. Huang, Y. Liu, H. Hou, T. You, Biosens. Bioelectron. 24, 632 (2008)CrossRefGoogle Scholar
  45. 45.
    C.-F. Tang, S.A. Kumar, S.-M. Chen, Anal. Biochem. 380, 174 (2008).  https://doi.org/10.1016/j.ab.2008.06.004 CrossRefGoogle Scholar
  46. 46.
    S. Alwarappan, G. Liu, C.-Z. Li, Nanomed. Nanotechnol. Biol. Med. 6, 52 (2010).  https://doi.org/10.1016/j.nano.2009.06.003 CrossRefGoogle Scholar
  47. 47.
    X. Xiao, P.R. Miller, R.J. Narayan et al., Electroanalysis 26, 52 (2014).  https://doi.org/10.1002/elan.201300253 CrossRefGoogle Scholar
  48. 48.
    C.-L. Sun, H.-H. Lee, J.-M. Yang, C.-C. Wu, Biosens. Bioelectron. 26, 3450 (2011).  https://doi.org/10.1016/j.bios.2011.01.023 CrossRefGoogle Scholar
  49. 49.
    M. Hadi, A. Rouhollahi, Anal. Chim. Acta 721, 55 (2012).  https://doi.org/10.1016/j.aca.2012.01.051 CrossRefGoogle Scholar
  50. 50.
    P. Sivakumar (2014) Mater. Res. Express 1, 045020CrossRefGoogle Scholar
  51. 51.
    T. Peik-See, A. Pandikumar, H. Nay-Ming, L. Hong-Ngee, Y. Sulaiman, Sensors 14, 15227 (2014)CrossRefGoogle Scholar
  52. 52.
    P. Gai, H. Zhang, Y. Zhang et al., J. Mater. Chem. B 1, 2742 (2013).  https://doi.org/10.1039/C3TB20215A CrossRefGoogle Scholar
  53. 53.
    J. Du, R. Yue, F. Ren et al., Gold Bull. 46, 137 (2013).  https://doi.org/10.1007/s13404-013-0090-0 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Center of Excellence in Electrochemistry, Faculty of ChemistryUniversity of TehranTehranIran
  2. 2.Biosensor Research Center, Endocrinology & Metabolism Molecular-Cellular Sciences InstituteTehran University of Medical SciencesTehranIran
  3. 3.Department of Medical Nanotechnology, Faculty of Advanced Technologies in MedicineIran University of Medical SciencesTehranIran
  4. 4.Department of ChemistryUniversity of TabrizTabrizIran

Personalised recommendations