Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 24, pp 20607–20614 | Cite as

Synthesis and annealing effects on the optical spectroscopy properties of red-emitting Gd(P0.5V0.5)O4: x at.% Eu3+

  • Min Zhu
  • Chen Hu
  • Jianhong Li
  • Yuanquan Feng
  • Huilin Kong
  • Shakir Ullah
  • Maofan Li
  • Fei You
  • Bing TengEmail author
  • Degao ZhongEmail author
  • Jie Tang
Article
  • 116 Downloads

Abstract

In this work, Gd(P0.5V0.5)O4: x at.% Eu3+ phosphors with different dopant concentrations (x = 1, 3, 5, 6, 7, 9) were synthesized through chemical coprecipitation method. The phosphors were characterized by XRD, SEM, infrared spectroscopy, photoluminescence excitation, emission spectra and CIE. The results of XRD indicate that the obtained phosphors have the tetragonal phase structure. Eu3+ emission transitions arise mainly from the 5D0 level to the 7FJ (J = 0, 1, 2, 3, 4) manifolds. The emission intensity and crystalline of Gd(P0.5V0.5)O4:x at% Eu3+ powders are increasing with annealing temperature at 600, 800, 1000, 1100, and 1200 °C, respectively. The introduction of VO43− can broaden the range of UV excitation spectrum wavelength and enhance the transition between 5D0 → 7F1 to 5D0 → 7F2 for long wavelength emission. And the most dominant emission peak of Eu3+ for 5D0 → 7F2 transition is closer to pure red light at 622 nm. The maximum emission intensity of the phosphors is the concentration of 6 at.% Eu3+ because of the distance of the neighbor Eu3+ ions reaching a certain critical value and the influence of multipolar interaction. Compared to commercial phosphors Y2O3:Eu3+ and (Y,Gd)BO3:Eu3+, our work yielded a longer wavelength red light emission intensity and a higher proportion of red light to orange light. All our results indicate that color purity of this phosphor turns it into a promising red phosphor in ultraviolet-pumped light-emitting diodes.

Notes

Acknowledgements

Financial support from the National Natural Science Foundation of China (Grant Nos. 11374170 and 11204148), China Postdoctoral Science Foundation (Grant No. 2015M580573), the Applied Basic Research Programs for Youths of Qingdao (Grant No. 15-9-1-52-JCH), the Qingdao Postdoctoral Application Research Project (Grant No. 2015127) and the open project of State Key Laboratory of rare earth resource utilization (RERU2016015) are gratefully acknowledged. The author also would like to thank the Taishan Scholar Program of Shandong Province, China.

References

  1. 1.
    E. Cavallia, M. Bettinellib, A. Bellettia, A. Speghinib, J. Alloy. Compd. 341, 107–110 (2002)CrossRefGoogle Scholar
  2. 2.
    J.Y. Sun, J.B. Xian, Z.G. Xia, H.Y. Du, Synth. J. Lumin. 130, 1818–1824 (2010)CrossRefGoogle Scholar
  3. 3.
    K. Park, S.W. Nam, Opt. Mater. 32, 612–615 (2010)CrossRefGoogle Scholar
  4. 4.
    V. Kumar, S. Singh, R.K. Kotnala, S. Chawla, J. Lumin. 146, 486–491 (2014)CrossRefGoogle Scholar
  5. 5.
    K. Lenczewska, Y. Gerasymchuk, N. Vu, N.Q. Liem, G. Boulon, D. Hreniak, J. Mater. Chem. C 5, 3014–3023 (2017)CrossRefGoogle Scholar
  6. 6.
    G.H. Pan, H.W. Song, Q.L. Dai, R.F. Qin, X. Bai, B. Dong, L.B. Fan, F. Wang, J. Appl. Phys. 104, 084910 (2008)CrossRefGoogle Scholar
  7. 7.
    M. Yu, J. Lin, S.B. Wang, Appl. Phys. A. 80, 353–360 (2005)CrossRefGoogle Scholar
  8. 8.
    B.G. Vats, S.K. Gupta, M. Keskar, R. Phatak, S. Mukherjee, S. Kannana, New J. Chem. 40, 1799–1806 (2016)CrossRefGoogle Scholar
  9. 9.
    A. Huignard, T. Gacoin, J.P. Boilot, Chem. Mater. 12, 1090–1094 (2000)CrossRefGoogle Scholar
  10. 10.
    Y. Yan, W. Zhang, B. Ren, L. Zhong, Y. Xu, Ionic 23, 869–875 (2017)CrossRefGoogle Scholar
  11. 11.
    R. Okram, N. Yaiphaba, R.S. Ningthoujam, N.R. Singh, Inorg. Chem. 53, 7204–72113 (2014)CrossRefGoogle Scholar
  12. 12.
    B.N. Mahalley, S.J. Dhoble, R.B. Pode, G. Alexander, Appl. Phys. A 70, 39–45 (2010)CrossRefGoogle Scholar
  13. 13.
    A.K. Levine, F.C. Palilla, Appl. Phys. Lett. 5, 118–120 (1964)CrossRefGoogle Scholar
  14. 14.
    D.J. Jovanovic, Z. Antic, R.M. Krsmanovic, M. Mitric, V. Ðord-evic, B.B.ártová,M.D. Dramic´anin, Opt. Mater. 35, 1797–1804 (2013)CrossRefGoogle Scholar
  15. 15.
    P. Halappa, A. Mathur, D. Marie-Helene, C. Shivakumara, J. Alloy. Compd. 740, 1086–1098 (2018)CrossRefGoogle Scholar
  16. 16.
    R.L. Sonia, A.I. Becerro, A. David, G. Valeria, M.F. Jesus, O. Manuel, Inorg. Chem. 52, 647–654 (2013)CrossRefGoogle Scholar
  17. 17.
    H. Lai, B. Chen, W. Xu, Y. Xie, X. Wang, W. Di, Mater. Lett. 60, 1341–1343 (2006)CrossRefGoogle Scholar
  18. 18.
    M.R. Moura, A.P. Ayala, I. Guedes, M. Grimsditch, C.-K. Loong, L.A. Boatner, J. Appl. Phys. 95, 1148–1151 (2004)CrossRefGoogle Scholar
  19. 19.
    Z. Yahiaoui, M.A. Hassairi, M. Dammak, J. Electron. Mater. 46, 4765–4773 (2017)CrossRefGoogle Scholar
  20. 20.
    B.N. Mahalley, R.B. Pode, P.K. Gupta, Phys. Status Solidi A 177, 293–302 (2000)CrossRefGoogle Scholar
  21. 21.
    M. Ferhi, S. Toumi, K. Horchani-Naifer, M. Ferid, J. Alloy. Compd. 714, 144–153 (2017)CrossRefGoogle Scholar
  22. 22.
    C.C. Santos, E.N. Silva, A.P. Ayala, I. Guedes, P.S. Pizani, C.-K. Loong, L.A. Boatner, J. Appl. Phys. 101, 053511 (2007)CrossRefGoogle Scholar
  23. 23.
    C.C. Zhang, Z.M. Zhang, R.C. Dai, Z.P. Wang, J.W. Zhang, Z.J. Ding, J. Phys. Chem. C 114, 18279–18282 (2010)CrossRefGoogle Scholar
  24. 24.
    H. Yuan, K. Wang, S. Li, X. Tan, Q. Li, T. Yan, K. Yang, J. Liu, B. Liu, G. Zou, J. Phys. Chem. C 117, 18603–18612 (2013)CrossRefGoogle Scholar
  25. 25.
    E. Pavitra, G. Seeta Rama Raju, J.Y. Park, L.L. Wang, B.K. Moon, J.S. Yu, Sci. Rep. 5, 10296 (2015)CrossRefGoogle Scholar
  26. 26.
    Y.H. Wang, Y.Y. Zuo, H. Gao, Mater. Res. Bull. 41, 2147–2153 (2006)CrossRefGoogle Scholar
  27. 27.
    H. Ronde, G. Blasse, J. Inorg. Nucl. Chem. 40, 215–219 (1978)CrossRefGoogle Scholar
  28. 28.
    Y.L. Xu, B. Teng, D.G. Zhong, L. Yang, J. He, Y. Meng, M. Zhu, J. Tang, J. Mater. Sci. 29, 714–720 (2018)Google Scholar
  29. 29.
    K. Riwotzki, M. Haase, J. Phys. Chem. B 102, 10129–10135 (1998)CrossRefGoogle Scholar
  30. 30.
    D.L. Dexter, J. Chem. Phys. 21, 836–850 (1953)CrossRefGoogle Scholar
  31. 31.
    K. Park, K.Y. Kim, M.H. Heo, Mater. Res. Bull. 47, 4151–4155 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Min Zhu
    • 1
    • 2
  • Chen Hu
    • 1
    • 2
  • Jianhong Li
    • 3
  • Yuanquan Feng
    • 1
    • 2
  • Huilin Kong
    • 1
    • 2
  • Shakir Ullah
    • 1
    • 2
  • Maofan Li
    • 1
    • 2
  • Fei You
    • 1
    • 2
  • Bing Teng
    • 1
    • 2
    Email author
  • Degao Zhong
    • 1
    • 2
    Email author
  • Jie Tang
    • 1
    • 2
  1. 1.College of PhysicsQingdao UniversityQingdaoChina
  2. 2.National Demonstration Center for Experimental Applied Physics EducationQingdao UniversityQingdaoChina
  3. 3.CRYSTECH IncQingdaoChina

Personalised recommendations