Skip to main content
Log in

Synthesis and annealing effects on the optical spectroscopy properties of red-emitting Gd(P0.5V0.5)O4: x at.% Eu3+

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, Gd(P0.5V0.5)O4: x at.% Eu3+ phosphors with different dopant concentrations (x = 1, 3, 5, 6, 7, 9) were synthesized through chemical coprecipitation method. The phosphors were characterized by XRD, SEM, infrared spectroscopy, photoluminescence excitation, emission spectra and CIE. The results of XRD indicate that the obtained phosphors have the tetragonal phase structure. Eu3+ emission transitions arise mainly from the 5D0 level to the 7FJ (J = 0, 1, 2, 3, 4) manifolds. The emission intensity and crystalline of Gd(P0.5V0.5)O4:x at% Eu3+ powders are increasing with annealing temperature at 600, 800, 1000, 1100, and 1200 °C, respectively. The introduction of VO43− can broaden the range of UV excitation spectrum wavelength and enhance the transition between 5D0 → 7F1 to 5D0 → 7F2 for long wavelength emission. And the most dominant emission peak of Eu3+ for 5D0 → 7F2 transition is closer to pure red light at 622 nm. The maximum emission intensity of the phosphors is the concentration of 6 at.% Eu3+ because of the distance of the neighbor Eu3+ ions reaching a certain critical value and the influence of multipolar interaction. Compared to commercial phosphors Y2O3:Eu3+ and (Y,Gd)BO3:Eu3+, our work yielded a longer wavelength red light emission intensity and a higher proportion of red light to orange light. All our results indicate that color purity of this phosphor turns it into a promising red phosphor in ultraviolet-pumped light-emitting diodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. E. Cavallia, M. Bettinellib, A. Bellettia, A. Speghinib, J. Alloy. Compd. 341, 107–110 (2002)

    Article  Google Scholar 

  2. J.Y. Sun, J.B. Xian, Z.G. Xia, H.Y. Du, Synth. J. Lumin. 130, 1818–1824 (2010)

    Article  CAS  Google Scholar 

  3. K. Park, S.W. Nam, Opt. Mater. 32, 612–615 (2010)

    Article  CAS  Google Scholar 

  4. V. Kumar, S. Singh, R.K. Kotnala, S. Chawla, J. Lumin. 146, 486–491 (2014)

    Article  CAS  Google Scholar 

  5. K. Lenczewska, Y. Gerasymchuk, N. Vu, N.Q. Liem, G. Boulon, D. Hreniak, J. Mater. Chem. C 5, 3014–3023 (2017)

    Article  CAS  Google Scholar 

  6. G.H. Pan, H.W. Song, Q.L. Dai, R.F. Qin, X. Bai, B. Dong, L.B. Fan, F. Wang, J. Appl. Phys. 104, 084910 (2008)

    Article  Google Scholar 

  7. M. Yu, J. Lin, S.B. Wang, Appl. Phys. A. 80, 353–360 (2005)

    Article  CAS  Google Scholar 

  8. B.G. Vats, S.K. Gupta, M. Keskar, R. Phatak, S. Mukherjee, S. Kannana, New J. Chem. 40, 1799–1806 (2016)

    Article  CAS  Google Scholar 

  9. A. Huignard, T. Gacoin, J.P. Boilot, Chem. Mater. 12, 1090–1094 (2000)

    Article  CAS  Google Scholar 

  10. Y. Yan, W. Zhang, B. Ren, L. Zhong, Y. Xu, Ionic 23, 869–875 (2017)

    Article  CAS  Google Scholar 

  11. R. Okram, N. Yaiphaba, R.S. Ningthoujam, N.R. Singh, Inorg. Chem. 53, 7204–72113 (2014)

    Article  CAS  Google Scholar 

  12. B.N. Mahalley, S.J. Dhoble, R.B. Pode, G. Alexander, Appl. Phys. A 70, 39–45 (2010)

    Article  Google Scholar 

  13. A.K. Levine, F.C. Palilla, Appl. Phys. Lett. 5, 118–120 (1964)

    Article  CAS  Google Scholar 

  14. D.J. Jovanovic, Z. Antic, R.M. Krsmanovic, M. Mitric, V. Ðord-evic, B.B.ártová,M.D. Dramic´anin, Opt. Mater. 35, 1797–1804 (2013)

    Article  CAS  Google Scholar 

  15. P. Halappa, A. Mathur, D. Marie-Helene, C. Shivakumara, J. Alloy. Compd. 740, 1086–1098 (2018)

    Article  CAS  Google Scholar 

  16. R.L. Sonia, A.I. Becerro, A. David, G. Valeria, M.F. Jesus, O. Manuel, Inorg. Chem. 52, 647–654 (2013)

    Article  Google Scholar 

  17. H. Lai, B. Chen, W. Xu, Y. Xie, X. Wang, W. Di, Mater. Lett. 60, 1341–1343 (2006)

    Article  CAS  Google Scholar 

  18. M.R. Moura, A.P. Ayala, I. Guedes, M. Grimsditch, C.-K. Loong, L.A. Boatner, J. Appl. Phys. 95, 1148–1151 (2004)

    Article  CAS  Google Scholar 

  19. Z. Yahiaoui, M.A. Hassairi, M. Dammak, J. Electron. Mater. 46, 4765–4773 (2017)

    Article  CAS  Google Scholar 

  20. B.N. Mahalley, R.B. Pode, P.K. Gupta, Phys. Status Solidi A 177, 293–302 (2000)

    Article  CAS  Google Scholar 

  21. M. Ferhi, S. Toumi, K. Horchani-Naifer, M. Ferid, J. Alloy. Compd. 714, 144–153 (2017)

    Article  CAS  Google Scholar 

  22. C.C. Santos, E.N. Silva, A.P. Ayala, I. Guedes, P.S. Pizani, C.-K. Loong, L.A. Boatner, J. Appl. Phys. 101, 053511 (2007)

    Article  Google Scholar 

  23. C.C. Zhang, Z.M. Zhang, R.C. Dai, Z.P. Wang, J.W. Zhang, Z.J. Ding, J. Phys. Chem. C 114, 18279–18282 (2010)

    Article  CAS  Google Scholar 

  24. H. Yuan, K. Wang, S. Li, X. Tan, Q. Li, T. Yan, K. Yang, J. Liu, B. Liu, G. Zou, J. Phys. Chem. C 117, 18603–18612 (2013)

    Article  CAS  Google Scholar 

  25. E. Pavitra, G. Seeta Rama Raju, J.Y. Park, L.L. Wang, B.K. Moon, J.S. Yu, Sci. Rep. 5, 10296 (2015)

    Article  CAS  Google Scholar 

  26. Y.H. Wang, Y.Y. Zuo, H. Gao, Mater. Res. Bull. 41, 2147–2153 (2006)

    Article  CAS  Google Scholar 

  27. H. Ronde, G. Blasse, J. Inorg. Nucl. Chem. 40, 215–219 (1978)

    Article  CAS  Google Scholar 

  28. Y.L. Xu, B. Teng, D.G. Zhong, L. Yang, J. He, Y. Meng, M. Zhu, J. Tang, J. Mater. Sci. 29, 714–720 (2018)

    CAS  Google Scholar 

  29. K. Riwotzki, M. Haase, J. Phys. Chem. B 102, 10129–10135 (1998)

    Article  CAS  Google Scholar 

  30. D.L. Dexter, J. Chem. Phys. 21, 836–850 (1953)

    Article  CAS  Google Scholar 

  31. K. Park, K.Y. Kim, M.H. Heo, Mater. Res. Bull. 47, 4151–4155 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from the National Natural Science Foundation of China (Grant Nos. 11374170 and 11204148), China Postdoctoral Science Foundation (Grant No. 2015M580573), the Applied Basic Research Programs for Youths of Qingdao (Grant No. 15-9-1-52-JCH), the Qingdao Postdoctoral Application Research Project (Grant No. 2015127) and the open project of State Key Laboratory of rare earth resource utilization (RERU2016015) are gratefully acknowledged. The author also would like to thank the Taishan Scholar Program of Shandong Province, China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bing Teng or Degao Zhong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, M., Hu, C., Li, J. et al. Synthesis and annealing effects on the optical spectroscopy properties of red-emitting Gd(P0.5V0.5)O4: x at.% Eu3+. J Mater Sci: Mater Electron 29, 20607–20614 (2018). https://doi.org/10.1007/s10854-018-0198-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-0198-3

Navigation