Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 24, pp 20603–20606 | Cite as

Tannic acid stabilized antioxidation copper nanoparticles in aqueous solution for application in conductive ink

  • Yueyue Hao
  • Nan Zhang
  • Jing LuoEmail author
  • Xiaoya Liu
Article
  • 144 Downloads

Abstract

Water-dispersible copper nanoparticles (Cu NPs) with good antioxidation properties are facilely synthesized in aqueous solution without inert gas protection employing tannic acid (TA) as the stabilizer and protectant. The sizes of as-prepared tannic acid capped copper nanoparticles (TA-Cu NPs) are in the range of 20–40 nm with a narrow size distribution. Owing to the protection of TA layer, TA-Cu NPs exhibit excellent anti-oxidation power and no oxidation was observed even after being stored under ambient conditions for 90 days. In addition, homogenous Cu NPs inks could be synthesized via the simple dispersion of TA-Cu NPs in water, which can be inkjet-printed onto flexible substrates into conductive patterns using a common color printer.

Notes

Acknowledgements

We thank the financial support by the Postgraduate Research Innovation Project (KYLX15-1179), MOE & SAFEA for the 111 Project (B13025) and Postgraduate Research & Practice Innovation Program of Jiangsu Provence (SJCX17_0477).

Supplementary material

10854_2018_196_MOESM1_ESM.docx (1.6 mb)
Supplementary material 1 (DOCX 1633 KB)

References

  1. 1.
    Y. Zhang, P. Zhu, G. Li, W. Wang, L. Chen, D.D. Lu, R. Sun, F. Zhou, C. Wong, Nanoscale 7, 13775–13783 (2015)CrossRefGoogle Scholar
  2. 2.
    Y. Zhang, P. Zhu, G. Li, T. Zhao, X. Fu, R. Sun, F. Zhou, C. Wong, ACS Appl. Mater. Interfaces 6, 560–567 (2014)CrossRefGoogle Scholar
  3. 3.
    D. Deng, Y. Cheng, Y. Jin, T. Qi, F. Xiao, J. Mater. Chem. 22, 23989–23995 (2012)CrossRefGoogle Scholar
  4. 4.
    C. Wu, B.P. Mosher, T. Zeng, J. Nanopart. Res. 8, 965–969 (2006)CrossRefGoogle Scholar
  5. 5.
    J. Xiong, X. Wu, Q. Xue, J. Colloid Interface Sci. 390, 41–46 (2013)CrossRefGoogle Scholar
  6. 6.
    C. Chen, I. Ahmed, L. Fruk, Nanoscale 5, 11610–11614 (2013)CrossRefGoogle Scholar
  7. 7.
    N.M. Zain, A.G.F. Stapley, G. Shama, Carbohyd. Polym. 112, 195–202 (2014)CrossRefGoogle Scholar
  8. 8.
    S. Tantubay, S.K. Mukhopadhyay, H. Kalita, S. Konar, S. Dey, A. Pathak, P. Pramanik, J. Nanopart. Res. 17, 1–18 (2015)CrossRefGoogle Scholar
  9. 9.
    M. He, L. Lu, J. Zhang, D. Li, Sci. Bull. 60, 227–234 (2015)CrossRefGoogle Scholar
  10. 10.
    J. Xiong, Y. Wang, Q. Xue, X. Wu, Green Chem. 13, 900–904 (2011)CrossRefGoogle Scholar
  11. 11.
    M. Tomonari, K. Ida, H. Yamashita, T. Yonezawa, J. Nanosci. Nanotech. 8, 2468–2471 (2008)CrossRefGoogle Scholar
  12. 12.
    T. Yonezawa, N. Nishida, A. Hyono, Chem. Lett. 39, 548–549 (2010)CrossRefGoogle Scholar
  13. 13.
    A.D. Brumbaugh, K.A. Cohen, S.K. St. Angelo, ACS Sustain. Chem. Eng. 2, 1933–1939 (2014)CrossRefGoogle Scholar
  14. 14.
    J.C. Yu, F.G. Zhao, W. Shao, C.W. Ge, W.S. Li, Nanoscale 7, 8811–8818 (2015)CrossRefGoogle Scholar
  15. 15.
    J. Luo, J. Lai, N. Zhang, Y. Liu, R. Liu, X. Liu, ACS Sustain. Chem. Eng. 4, 1404–1413 (2016)CrossRefGoogle Scholar
  16. 16.
    J. Anissi, M. El Hassouni, A. Ouardaoui, K. Sendide, Food Chem. 150, 438–447 (2014)CrossRefGoogle Scholar
  17. 17.
    N. Zhang, J. Luo, R. Liu, X. Liu, RSC Adv. 6, 83720–83729 (2016)CrossRefGoogle Scholar
  18. 18.
    Z. Yi, X. Li, X. Xu, B. Luo, J. Luo, W. Wu, Y. Yi, Colloids Surf. A 392, 131–136 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material EngineeringJiangnan UniversityWuxiPeople’s Republic of China

Personalised recommendations