Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 24, pp 20588–20594 | Cite as

Electrodeposition of silver (Ag) nanoparticles on MnO2 nanorods for fabrication of highly conductive and flexible paper electrodes for energy storage application

  • Ishrat Sultana
  • Muhammad Idrees
  • M. Yasir Rafique
  • Sameen Ilyas
  • Shahzada Qamar Hussain
  • Asim Ali Kahn
  • Aamir RazaqEmail author


Metal oxide based electrodes are attractive for energy storage applications with limited characteristics of flexibility due to inherent rigid structure. However, incorporation of flexible insulating matrix within metal oxide composites result in poor electrically conductive and energy storage characteristics. This study presents the fabrication of flexible MnO2 based composite electrodes prepared by incorporation of lignocelluloses (LC) fibers, directly collected from a self-growing plant, Monochoria Vaginalis. Furthermore electrodeposition of silver (Ag) nanoparticles was performed on LC/MnO2 in potentiostatic mode to address the electrically conductive characteristics. Morphology, structural, conductive and energy storage properties of fabricated electrodes are analyzed by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), impedance analyzer and potentiostat, respectively. SEM images clearly indicate the deposition of Ag nanoparticles on MnO2 nanorods embedded in LC fibers whereas FTIR results confirm the bonding of the functional groups. Cyclic voltammetry measurements showed efficient kinetics of LC/MnO2 after electrodeposition of Ag nanoparticles. The effects on electrical properties associated with blending MnO2 nanorods in lignocelluloses fibers and Ag deposition on MnO2 in LC/MnO2 are explored in wide frequency range between 10 Hz and 5 MHz. However, deposition of Ag nanoparticles on MnO2 nanorods surfaces acts as a conductive path and reduces the associated resistance. Incorporated flexibility in rigid structure of MnO2 and further improvements in conductive and energy storage characteristics will open the possibilities to be used as electrode in modern bendable energy storage devices.



The financial support from NRPU Grant No: 5334/Federal/NRPU/R&D/HEC/2016 awarded by Higher Education Commission (HEC), Pakistan are greatly acknowledged.


  1. 1.
    L. Nyholm, G. Nyström, A. Mihranyan, M. Strømme, Adv. Mater. 23, 3751–3769 (2011)Google Scholar
  2. 2.
    L. Bin, J. Zhang, X. Wang, G. Chen, D. Chen, C. Zhou, G. Shen, Nano Lett. 12, 3005–3011 (2012)CrossRefGoogle Scholar
  3. 3.
    T. Taberna, P. Louis, G. Chevallier, P. Simon, D. Plée, T. Aubert, Mater. Res. Bull. 41, 478–484 (2006)CrossRefGoogle Scholar
  4. 4.
    E. Frackowiak, F. Beguin, Carbon 39, 937–950 (2001)CrossRefGoogle Scholar
  5. 5.
    S. Ghosh, O. Inganäs, Adv. Mater. 11, 1214 (1999)CrossRefGoogle Scholar
  6. 6.
    S. Xie, M. Zhang, P. Liu, S. Wang, S. Liu, H. Feng, H. Zheng, F. Cheng, Mater. Res. Bull. 96, 413–418 (2017)CrossRefGoogle Scholar
  7. 7.
    C.C. Hu, T.W. Tsou, Electrochem. Commun. 4, 105 (2002)CrossRefGoogle Scholar
  8. 8.
    R.N. Reddy, R.G. Reddy, J. Power Sources 124, 330 (2003)CrossRefGoogle Scholar
  9. 9.
    M. Toupin, T. Brousse, D. Bélanger, Chem. Mater. 14, 3946 (2002)CrossRefGoogle Scholar
  10. 10.
    X. Hui, Y. Zhu, Y. Wu, Z. Wu, E. Liu, Mater Res Bull. 50, 303–306 (2014)CrossRefGoogle Scholar
  11. 11.
    T. Brousse, M. Toupin, R. Dugas, L. Athouël, O. Crosnier, D. Bélanger, J. Electrochem. Soc. 153, 2171 (2006)CrossRefGoogle Scholar
  12. 12.
    Z. Hao, G. Cao, Z. Wang, Y. Yang, Z. Shi, Z. Gu, Nano Lett. 8, 2664–2668 (2008)CrossRefGoogle Scholar
  13. 13.
    K. Amine, J. Liu, S. Kang, I. Belharouak, Y. Hyung, D. Vissers, G. Henriksen, J. Power Sources 129, 14–19 (2004)CrossRefGoogle Scholar
  14. 14.
    S. Chen, J. Zhu, X. Wu, Q. Han, X. Wang, ACS Nano 4, 2822 (2010)CrossRefGoogle Scholar
  15. 15.
    L. Jianwei, J. Essner, J. Li, Chem. Mater. 22, 5022–5030 (2010)CrossRefGoogle Scholar
  16. 16.
    D. Liu, B.B. Garcia, Q. Zhang, Q. Guo, Y. Zhang, S. Sepehri, G. CaoAdv, Funct. Mater. 19, 1015 (2009)CrossRefGoogle Scholar
  17. 17.
    Y.S. Ding, X.F. Shen, S. Sithambaram, S. Gomez, R. Kumar, V.M.B. Crisostomo, S.L. Suib, M. Aindow, Chem. Mater. 17, 5382 (2005)CrossRefGoogle Scholar
  18. 18.
    C. Shu-Lei, J.Z. Wang, S.Y. Chew, H.K. Liu, S.X. Dou, Electrochem. Commun. 10, 1724–1727 (2008)CrossRefGoogle Scholar
  19. 19.
    L. Seung Woo, J. Kim, S. Chen, P.T. Hammond, S.-H. Yang, ACS Nano 4, 3889–3896 (2010)CrossRefGoogle Scholar
  20. 20.
    G. Zhe, H. Zhu, E. Gillette, X. Han, W. Gary, R. Liangbing, Hu, S.B. Lee, ACS Nano 7, 6037–6046 (2013)CrossRefGoogle Scholar
  21. 21.
    Y. Longyan, X. Xiao, T. Ding, J. Zhong, X. Zhang, Y. Shen, B. Hu, Y. Huang, J. Zhou, Z.L. Wang, Angew. Chem. 124, 5018–5022 (2012)CrossRefGoogle Scholar
  22. 22.
    G. Kezheng, Z. Shao, J. Li, X. Wang, X. Peng, W. Wang, F. Wang, J. Mater. Chem. A. 1, 63–67 (2013)CrossRefGoogle Scholar
  23. 23.
    Z. Li, J. He, J. Zhang, Z. He, Y. Hu, C. Zhang, H. He, J. Phys. Chem. C 115, 16873–16878 (2011)CrossRefGoogle Scholar
  24. 24.
    M. Shihabudheen, M. Kinattukara, P. Lisha, T. Pradeep, J. Hazard. Mater. 181, 986–995 (2010)CrossRefGoogle Scholar
  25. 25.
    Y.C. Chen, Y.K. Hse, Y.G. Lin, Y.Y. Horng, L.C. Chen, K.H. Chen, Electrochim. Acta 56, 7124–7130 (2011)CrossRefGoogle Scholar
  26. 26.
    S. Junlong, L.N. Birbach, J.P. Hinestroza, Cellulose 19, 411–424 (2012)CrossRefGoogle Scholar
  27. 27.
    T. Dubas, T. Stephan, P. Kumlangdudsana, P. Potiyaraj, Colloids Surf. A 289, 105–109 (2006)CrossRefGoogle Scholar
  28. 28.
    J. Hongquan, S. Manolache, A.C. Lee Wong, F.S. Denes, J. Appl. Polym. Sci. 93, 1411–1422 (2004)CrossRefGoogle Scholar
  29. 29.
    L. Wenjie, A. Jorma, M. Virtanen, M. Reginald Penner, Appl. Phys. Lett. 60, 1181–1183 (1992)CrossRefGoogle Scholar
  30. 30.
    B. Yao et al., Paper-based solid-state supercapacitors with pencil-drawing graphite/polyaniline networks hybrid electrodes. Nano Energy 2(6), 1071–1078 (2013)CrossRefGoogle Scholar
  31. 31.
    Y. Shao et al., Graphene-based materials for flexible supercapacitors. Chem. Soc. Rev. 44(11), 3639–3665 (2015)CrossRefGoogle Scholar
  32. 32.
    B. Yao et al., Flexible transparent molybdenum trioxide nanopaper for energy storage. Adv. Mater. 28(30), 6353–6358 (2016)CrossRefGoogle Scholar
  33. 33.
    B. Yao et al., Paper-based electrodes for flexible energy storage devices. Adv. Sci. 4(7), 1700107 (2017)CrossRefGoogle Scholar
  34. 34.
    P.F. Moonen, I. Yakimets, J. Huskens, Fabrication of transistors on flexible substrates: from mass-printing to high-resolution alternative lithography strategies. Adv. Mater. 24(41), 5526–5541 (2012)CrossRefGoogle Scholar
  35. 35.
    Y.-Z. Zhang et al., Flexible supercapacitors based on paper substrates: a new paradigm for low-cost energy storage. Chem. Soc. Rev. 44(15), 5181–5199 (2015)CrossRefGoogle Scholar
  36. 36.
    Z. Jim, V. Rebecca, M. Stiger, P.R. Biernacki, R.M. Penner, J. Phys. Chem. 100, 837–844 (1996)CrossRefGoogle Scholar
  37. 37.
    S. Ishrat, A. Razaq, M. Idrees, M.H. Asif, H. Ali, A. Asim, S. Iqbal, S.M. Ramay, S.Q. Hussain, J. Electron. Mater. 45, 5140–5145 (2016)CrossRefGoogle Scholar
  38. 38.
    M. Quinn, M. Bernadette, C. Dekker, S.G. Lemay, J. Am. Chem. Soc. 127, 6146–6147 (2005)CrossRefGoogle Scholar
  39. 39.
    T. Jing, D. Peng, X. Wu, W. Li, H. Deng, S. Liu, Carbohydr. Polym. 156, 19–25 (2017)CrossRefGoogle Scholar
  40. 40.
    M. Momeni, M.Y. Ghayeb, S. Gheibee, Ceram. Int. 43, 564–570 (2017)CrossRefGoogle Scholar
  41. 41.
    I. Sultana, F. Ashraf, F. Manzoor, N. Hassan, A. Razaq, J. Electron. Mater. 455(10), 5140–5145 (2016)CrossRefGoogle Scholar
  42. 42.
    T. Farid, A. Islama, A. Masooda, F. Iqbalb, M. Yasir Rafiquea, A. Razaqa, Ceram. Int. 44, 11397–11401 (2018)CrossRefGoogle Scholar
  43. 43.
    J.H. Luiz Ornaghi, Á Gustavo, D. Olivieras Moraes, M. Poletto, A.J. Zattera, S.C. Amico, Cell. Chem. Technol. 50, 15–22 (2016)Google Scholar
  44. 44.
    E. Sivasankara Rao, S. Anantharaj, U. Nithiyanantham, S. Kundu, Phys. Chem. Chem. Phys. 17, 5474–5484 (2015)CrossRefGoogle Scholar
  45. 45.
    T. Torkamani, M. Fahimeh, S. Azizian. J. Mol. Liq. 214, 270–275 (2016)CrossRefGoogle Scholar
  46. 46.
    M. Idrees, M. Nadeem, S. Anwar Siddiqi, R. Ahmad, A. Hussnain, M. Mehmood, Mater. Chem. Phys. 162, 652–658 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsCOMSATS University Islamabad, Lahore CampusLahorePakistan
  2. 2.Department of Energy SciencesSungkyunkwan UniversitySeoulSouth Korea
  3. 3.Department of Electrical EngineeringCOMSATS University Islamabad, Lahore CampusLahorePakistan

Personalised recommendations