Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 24, pp 20580–20587 | Cite as

Enhanced electrochemiluminescence behavior of C,N quantum dots embedded g-C3N4 nanosheets and its sensing application for copper (II)

  • Lu FangEmail author
  • Yan Xue
  • Xing-Ming Hu
  • Dong Xie
  • Wen-Jun Li


Electrochemiluminescence (ECL) is a very sensitive method for trace analysis because of its background interference and high signal-to-noise ratio. In the past decade, the determination of Cu2+ in environment has attracted considerable attention since it plays an essential role in many physiological processes. Herein, a novel ECL sensor based on C,N quantum dots embedded g-C3N4 nanosheets (C,N-QDs@NSs) was constructed for the detection of Cu2+. The nanocomposite was rapidly obtained via the oxidation of normal g-C3N4 in H2O2 solution using sonochemical synthesizing method. Due to the abundant surface defects on C,N-QDs@NSs, the ECL intensity was magnified 2.5 times for using a C,N-QDs@NSs electrode in comparision to a g-C3N4 modified electrode. Besides, C,N-QDs@NSs could accelerate the rate of electron transfer in ECL reaction and thus resulted in the lower cathodic peak potential. Significantly, Cu2+ could effectively quench the ECL of C,N-QD@NSs, which endowed C,N-QD@NSs with a great advantage in the ECL detection of Cu2+. under optimum conditions, C,N-QDs@NSs modified electrode exhibited a linear detection range from 5 × 10−4 to 10 µM with a detection limit of 2 × 10−4 µM (S/N = 3) for Cu2+, and was finally applied to detect Cu2+ in real samples with satisfactory results.



This research was funded by National Natural Science Foundation of China (Grant No. 21501040).


  1. 1.
    X. Fang, L. Hu, C. Ye, L. Zhang, Pure Appl. Chem. 82, 2185–2198 (2010)CrossRefGoogle Scholar
  2. 2.
    N. Gao, X. Fang, Chem. Rev. 115, 8294–8343 (2015)CrossRefGoogle Scholar
  3. 3.
    C. Kim, J.C. Park, S.Y. Choi, Y. Kim, S.Y. Seo, T.E. Park, S.H. Kwon, B. Cho, J.H. Ahn, Small 14, 1704116 (2018)CrossRefGoogle Scholar
  4. 4.
    K.K. Pawar, V.L. Patil, N.L. Tarwal, N.S. Harale, J.H. Kim, P.S. Patil, J. Mater. Sci.: Mater. Electron. 29, 14508–14518 (2018)Google Scholar
  5. 5.
    Y. Zhuo, H.J. Wang, Y.M. Lei, P. Zhang, J.L. Liu, Y.Q. Chai, R. Yuan, Analyst 143, 3230–3248 (2018)CrossRefGoogle Scholar
  6. 6.
    F. Teng, K. Hu, W. Ouyang, X. Fang, Adv. Mater. 30, 1706262 (2018)CrossRefGoogle Scholar
  7. 7.
    H. Tian, H. Fan, J. Ma, L. Ma, G. Dong, Electrochim. Acta 247, 787–794 (2017)CrossRefGoogle Scholar
  8. 8.
    C. Wang, H. Fan, X. Ren, J. Fang, J. Ma, N. Zhao, Mater. Charact. 139, 89–99 (2018)CrossRefGoogle Scholar
  9. 9.
    J.C. Wang, H. Fan, X. Ren, J. Ma, J. Fang, W. Wang, ChemSusChem 11, 700–708 (2018)CrossRefGoogle Scholar
  10. 10.
    C. Wang, H. Fan, X. Ren, Y. Wen, W. Wang, Appl. Surf. Sci. 462, 423–431 (2018)CrossRefGoogle Scholar
  11. 11.
    M. Yan, F. Zhu, W. Gu, L. Sun, W. Shi, Y. Hua, RSC Adv. 6, 61162–61174 (2016)CrossRefGoogle Scholar
  12. 12.
    J. Di, J. Xia, S. Yin, H. Xu, L. Xu, Y. Xu, M. He, H. Li, J. Mater. Chem. A 2, 5340–5351 (2014)CrossRefGoogle Scholar
  13. 13.
    X. She, H. Xu, Y. Xu, J. Yan, J. Xia, L. Xu, Y. Song, Y. Jiang, Q. Zhang, H. Li, J. Mater. Chem. A 2, 2563–2570 (2014)CrossRefGoogle Scholar
  14. 14.
    C. Zhou, Y. Chen, P. Shang, Y. Chi, Analyst 141, 3379–3388 (2016)CrossRefGoogle Scholar
  15. 15.
    L. Chen, X. Zeng, P. Si, Y. Chen, Y. Chi, D.H. Kim, G. Chen, Anal. Chem. 86, 4188–4195 (2014)CrossRefGoogle Scholar
  16. 16.
    C. Cheng, Y. Huang, X. Tian, B. Zheng, Y. Li, H. Yuan, D. Xiao, S. Xie, M.M. Choi, Anal. Chem. 84, 4754–4759 (2012)CrossRefGoogle Scholar
  17. 17.
    Q.M. Feng, Y.Z. Shen, M.X. Li, Z.L. Zhang, W. Zhao, J.J. Xu, H.Y. Chen, Anal. Chem. 88, 937–944 (2015)CrossRefGoogle Scholar
  18. 18.
    D. Bhattacharyya, P. Kumar, Y.R. Smith, S.K. Mohanty, M. Misra, J. Mater. Sci. Technol. 34, 905–913 (2018)CrossRefGoogle Scholar
  19. 19.
    H. Xu, S. Liang, X. Zhu, X. Wu, Y. Dong, H. Wu, W. Zhang, Y. Chi, Biosens. Bioelectron. 92, 695–701 (2017)CrossRefGoogle Scholar
  20. 20.
    H. Xu, B.W. Zeiger, K.S. Suslick, Chem. Soc. Rev. 42, 2555–2567 (2013)CrossRefGoogle Scholar
  21. 21.
    J. Cui, D. Qi, X. Wang, Ultrason. Sonochem. 48, 181–187 (2018)CrossRefGoogle Scholar
  22. 22.
    H. Liu, X. Zhang, X. Wu, L. Jiang, C. Burda, J.J. Zhu, Chem. Commun. 47, 4237–4239 (2011)CrossRefGoogle Scholar
  23. 23.
    J.J. Miao, R.L. Fu, J.M. Zhu, K. Xu, J.J. Zhu, H.Y. Chen, Chem. Commun. 3013–3015 (2006)Google Scholar
  24. 24.
    J. Wu, Y.J. Zhu, S.W. Cao, F. Chen, Adv. Mater. 22, 749–753 (2010)CrossRefGoogle Scholar
  25. 25.
    J.G. Bruno, A.M. Richarte, T. Phillips, Microchem. J. 115, 32–38 (2014)CrossRefGoogle Scholar
  26. 26.
    Q. Zhai, H. Xing, X. Zhang, J. Li, E. Wang, Anal. Chem. 89, 7788–7794 (2017)CrossRefGoogle Scholar
  27. 27.
    H.R. Zhang, M.S. Wu, J.J. Xu, H.Y. Chen, Anal. Chem. 86, 3834–3840 (2014)CrossRefGoogle Scholar
  28. 28.
    D.L. Brandon, A.M. Korn, L.L. Yang, J. Food Sci. 77, T83–T88 (2012)CrossRefGoogle Scholar
  29. 29.
    Y. Chen, S. Zhou, L. Li, J.J. Zhu, Nano Today 12, 98–115 (2017)CrossRefGoogle Scholar
  30. 30.
    N. Myung, Y. Bae, A.J. Bard, Nano Lett. 3, 1053–1055 (2003)CrossRefGoogle Scholar
  31. 31.
    W.W. Zhao, J. Wang, Y.C. Zhu, J.J. Xu, H.Y. Chen, Anal. Chem. 87, 9520–9531 (2015)CrossRefGoogle Scholar
  32. 32.
    L. Liu, M.-R. Xie, F. Fang, Z.-Y. Wu, Microchem. J. 139, 357–362 (2018)CrossRefGoogle Scholar
  33. 33.
    X. Liu, N. Zhang, T. Bing, D. Shangguan, Anal. Chem. 86, 2289–2296 (2014)CrossRefGoogle Scholar
  34. 34.
    Y. Wu, Y. Tan, J. Wu, S. Chen, Y.Z. Chen, X. Zhou, Y. Jiang, C. Tan, ACS. Appl. Mater. Interfaces 7, 6882–6888 (2015)CrossRefGoogle Scholar
  35. 35.
    J. Tian, Q. Liu, A.M. Asiri, A.O. Al-Youbi, X. Sun, Anal. Chem. 85, 5595–5599 (2013)CrossRefGoogle Scholar
  36. 36.
    Q. Han, B. Wang, Y. Zhao, C. Hu, L. Qu, Angew. Chem. Int. Ed. Engl. 54, 11433–11437 (2015)CrossRefGoogle Scholar
  37. 37.
    S. Yang, Y. Gong, J. Zhang, L. Zhan, L. Ma, Z. Fang, R. Vajtai, X. Wang, P.M. Ajayan, Adv. Mater. 25, 2452–2456 (2013)CrossRefGoogle Scholar
  38. 38.
    L. Chen, D. Huang, S. Ren, T. Dong, Y. Chi, G. Chen, Nanoscale 5, 225–230 (2013)CrossRefGoogle Scholar
  39. 39.
    J. Ji, L. He, Y. Shen, P. Hu, X. Li, L.P. Jiang, J.R. Zhang, L. Li, J.J. Zhu, Anal. Chem. 86, 3284–3290 (2014)CrossRefGoogle Scholar
  40. 40.
    J. Lou, S. Liu, W. Tu, Z. Dai, Anal. Chem. 87, 1145–1151 (2015)CrossRefGoogle Scholar
  41. 41.
    X. Zhang, X. Xie, H. Wang, J. Zhang, B. Pan, Y. Xie, J. Am. Chem. Soc. 135, 18–21 (2012)CrossRefGoogle Scholar
  42. 42.
    H. Dai, Y. Chi, X. Wu, Y. Wang, M. Wei, G. Chen, Biosens. Bioelectron. 25, 1414–1419 (2010)CrossRefGoogle Scholar
  43. 43.
    J. Yu, X. Zhang, Q. Lu, D. Sun, X. Wang, S. Zhu, Z. Zhang, W. Yang, Spectrochim. Acta B 145, 64–70 (2018)CrossRefGoogle Scholar
  44. 44.
    L. Yang, N. Huang, L. Huang, M. Liu, H. Li, Y. Zhang, S. Yao, Anal. Methods 9, 618–624 (2017)CrossRefGoogle Scholar
  45. 45.
    R. Grinyte, J. Barroso, B. Diez-Buitrago, L. Saa, M. Moller, V. Pavlov, Anal. Chim. Acta 986, 42–47 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemical and Chemical EngineeringHefei Normal UniversityHefeiPeople’s Republic of China
  2. 2.School of Chemical Science and EngineeringTongji UniversityShanghaiPeople’s Republic of China

Personalised recommendations