Skip to main content
Log in

Synthesis and characterization of magnetic and microwave absorbing properties in polycrystalline cobalt zinc ferrite (Co0.5Zn0.5Fe2O4) composite

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this research work, magnetic and microwave absorption loss and other response characteristics in cobalt zinc ferrite composite has been studied. Cobalt zinc ferrite with the composition of Co0.5Zn0.5Fe2O4 was prepared via high energy ball milling followed by sintering. Phase characteristics of the as-prepared sample by using XRD analysis shows evidently that a high crystalline ferrite has been formed with the assists of thermal energy by sintering at 1250 °C which subsequently changes the magnetic properties of the ferrite. A high magnetic permeability and losses was obtained from ferrite with zinc content. Zn substitution into cobalt ferrite has altered the cation distribution between A and B sites in spinel ferrite which contributed to higher magnetic properties. Specifically, Co0.5Zn0.5Fe2O4 provides electromagnetic wave absorption characteristics. It was found that cobalt zinc ferrite sample is highly potential for microwave absorber which showed the highest reflection loss (RL) value of − 24.5 dB at 8.6 GHz. This material can potentially minimize EMI interferences in the measured frequency range, and was therefore used as fillers in the prepared composite that is applied for microwave absorbing material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J. Luo, Y. Zuo, P. Shen, Z. Yan, K. Zhang, Excellent microwave absorption properties by tuned electromagnetic parameters in polyaniline coated Ba0.9La0.1Fe11.9Ni0.1O19/reduced graphene oxide nanocomposites. RSC Adv. 7, 36433–36443 (2017)

    Article  CAS  Google Scholar 

  2. Y.B. Feng, T. Qiu, C.Y. Shen, X.Y. Li, Electromagnetic and absorption properties of carbonyl iron/rubber radar absorbing materials. IEEE Trans. Magn. 42, 363–368 (2006)

    Article  CAS  Google Scholar 

  3. P.J. Bora, K.J. Vinoy, P.C. Ramamurthy, G. Madras, Electromagnetic interference shielding effectiveness of polyaniline-nickel oxide coated cenosphere composite film. Compos. Commun. 4, 37–42 (2017)

    Article  Google Scholar 

  4. H. Wu, S. Qu, K. Lin, Y. Qing, L. Wang, Y. Fan, Q. Fu, F. Zhang, Enhanced low-frequency microwave absorbing property of SCFs@TiO2 composite. Powder Technol. 333, 153–159 (2018)

    Article  CAS  Google Scholar 

  5. H. Wu, G. Wu, Y. Ren, X. Li, L. Wang, Multishelled metal oxide hollow spheres: easy synthesis and formation mechanism. Chem.-A Eur. J. 22, 8864–8871 (2016)

    Article  CAS  Google Scholar 

  6. H. Wu, G. Wu, L. Wang, Peculiar porous α-Fe2O3, γ-Fe2O3 and Fe3O4 nanospheres: facile synthesis and electromagnetic properties. Powder Technol. 269, 443–451 (2015)

    Article  CAS  Google Scholar 

  7. H. Wu, G. Wu, Y. Ren, L. Yang, L. Wang, X. Li, Co2+/Co3+ ratio dependence of electromagnetic wave absorption in hierarchical NiCo2O4–CoNiO2 hybrids. J. Mater. Chem. C 3, 7677–7690 (2015)

    Article  CAS  Google Scholar 

  8. G. Wu, Y. Cheng, Y. Ren, Y. Wang, Z. Wang, H. Wu, Synthesis and characterization of γ-Fe2O3@C nanorod-carbon sphere composite and its application as microwave absorbing material. J. Alloys Compd. 652, 346–350 (2015)

    Article  CAS  Google Scholar 

  9. G. Wu, Y. Cheng, F. Xiang, Z. Jia, Q. Xie, G. Wu, H. Wu, Morphology-controlled synthesis, characterization and microwave absorption properties of nanostructured 3D CeO2. Mater. Sci. Semicond. Process. 41, 6–11 (2016)

    Article  CAS  Google Scholar 

  10. G. Wu, Y. Cheng, Q. Xie, Z. Jia, F. Xiang, H. Wu, Facile synthesis of urchin-like ZnO hollow spheres with enhanced electromagnetic wave absorption properties. Mater. Lett. 144, 157–160 (2015)

    Article  CAS  Google Scholar 

  11. T. Kagotani, R. Kobayashi, S. Sugimoto, K. Inomata, K. Okayama, J. Akedo, Magnetic properties and microwave characteristics of Ni Zn Cu ferrite film fabricated by aerosol deposition method. J. Magn. Magn. Mater. 290–291, 1442–1445 (2005)

    Article  Google Scholar 

  12. P.J. Bora, M. Porwal, K.J. Vinoy, P.C. Ramamurthy, G. Madras, Industrial waste fly ash cenosphere composites based broad band microwave absorber. Compos. Part B 134, 151–163 (2018)

    Article  CAS  Google Scholar 

  13. T.K. Gupta, B.P. Singh, R.B. Mathura, S.R. Dhakate, Multi-walled carbon nanotube–graphene–polyaniline multiphase nanocomposite with superior electromagnetic shielding effectiveness. Nanoscale 6, 842–851 (2014)

    Article  CAS  Google Scholar 

  14. P.J. Bora, G. Lakhani, P.C. Ramamurthy, G. Madras, Poly(vinylbutyral) -polyanilinemagnetically functionalized fly ash cenosphere composite film for electromagnetic interference shielding. Compos. Part B: Eng. 106, 224–233 (2016)

    Article  CAS  Google Scholar 

  15. R.C. Handley, Modern magnetic materials: principles and applications.(Wiley-Interscience Publication, Hoboken, 2000)

    Google Scholar 

  16. W. Fu, S. Liu, W. Fan, H. Yang, X. Pang, J. Xu, G. Zou, Hollow glass microspheres coated with CoFe2O4 and its microwave absorption property. J. Magn. Magn. Mater. 316, 54–58 (2007)

    Article  CAS  Google Scholar 

  17. E. Manova, B. Kunev, D. Paneva, I. Mitov, L. Petrov, Mechanosynthesis, characterization, and magnetic properties of nanoparticles of cobalt ferrite, CoFe2O4. Chem. Mater. 16, 5689–5696 (2004)

    Article  CAS  Google Scholar 

  18. J. Cao, W. Fu, H. Yang, Q. Yu, Y. Zhang, S. Liu, P. Sun, X. Zhou, Large-scale synthesis and microwave absorption enhancement of actinomorphictubular ZnO/CoFe2O4 nanocomposites. J. Phys. Chem. B 113, 4642–4647 (2009)

    Article  CAS  Google Scholar 

  19. J. Wan, X. Wang, Y. Wu, M. Zeng, Y. Wang, H. Jiang, W. Zhou, G. Wang, Magnetoelectric CoFe2O4–Pb(Zr,Ti)O3 composite thin films derived by a sol-gel process. Appl. Phys. Lett. 86, 122501 (2005)

    Article  Google Scholar 

  20. S.B. Waje, M. Hashim, W.D.W. Yusoff, Z. Abbas, Sintering temperature dependence of room temperature magnetic and dielectric properties of Co0.5Zn0.5Fe2O4 prepared using mechanically alloyed nanoparticles. J. Magn. Magn. Mater. 322, 686–691 (2010)

    Article  CAS  Google Scholar 

  21. M.A.N. Ismail, M. Hashim, A. Hajalilou, I. Ismail, M.M.M. Zulkimi, N.H. Abdullah, W.N.A. Rahman, M.S. Abdullah, M. Manap, Magnetic properties of mechanically alloyed cobalt-zinc ferrite nanoparticles. J. Supercond. Novel Magn. 27, 1293–1298 (2014)

    Article  Google Scholar 

  22. A. Poorbafrani, E. Kiani, Enhanced microwave absorption properties in cobalt–zinc ferrite based nanocomposites. J. Magn. Magn. Mater. 416, 10–14 (2016)

    Article  CAS  Google Scholar 

  23. I.R. Ibrahim, M. Hashim, R. Nazlan, I. Ismail, W.N.A. Rahman, N.H. Abdullah, F.M. Idris, M.S.E. Shafie, M.M.M. Zulkimi, Grouping trends of magnetic permeability components in their parallel evolution with microstructure in Ni0.3Zn0.7Fe2O4. J. Magn. Magn. Mater. 355, 265–275 (2014)

    Article  CAS  Google Scholar 

  24. I. Ismail, M. Hashim, K.A. Matori, R. Alias, J. Hassan, Dependence of magnetic properties and microstructure of mechanically alloyed Ni0.5Zn0.5Fe2O4 on soaking time. J. Magn. Magn. Mater. 324(16), 2463–2470 (2018)

    Article  Google Scholar 

  25. M.S. Mustaffa, M. Hashim, R.S. Azis, I. Ismail, S. Kanagesan, M.M. Zulkimi, Magnetic phase-transition dependence on nano-to-micron grain-size microstructural changes of mechanically alloyed and sintered Ni0.6Zn0.4Fe2 O 4. J. Supercond. Novel Magn. 27, 1451–1462 (2014)

    Article  Google Scholar 

  26. A. Verma, T.C. Goel, R.G. Mendiratta, P. Kishan, Magnetic properties of nickel-zinc ferrites prepared by the citrate precursor method. J. Magn. Magn. Mater. 208, 13–19 (2000)

    Article  CAS  Google Scholar 

  27. S.O. Chikazumi, S.H. Charap, Physics of Magnetism (John Wiley, New York, 1964)

    Google Scholar 

  28. L. Neel, Magnetic properties of ferrites: ferrimagnetism and antiferromagnetism. Ann. Phys. 3, 137–198 (1948)

    Article  CAS  Google Scholar 

  29. S. Morup, Superparamagnetism and spin glass ordering in magnetic nanocomposites. Europhys. Lett. 28, 671–676 (1994)

    Article  CAS  Google Scholar 

  30. R. Adhikari, A. Sarkar, M.V. Limaye, S.K. Kulkarni, A.K. Das, Variation and sign change of magnetostrictive strain as a function of Ni concentration in Ni-substituted ZnFe2O4 sintered nanoparticles. J. Appl. Phys. 111, 073903 (2012)

    Article  Google Scholar 

  31. C.N. Chinnasamy, A. Narayanasamy, N. Ponpandian, K. Chattopadhyay, H. Guerault, J.M. Greneche, Magnetic properties of nanostructured ferrimagnetic zinc ferrite. J. Phys.: Condensed Matter-IOPsci. 12(35), 7795–7805 (2000)

    CAS  Google Scholar 

  32. S.S. Kim, S.B. Jo, K.I. Gueon, K.K. Choi, J.M. Kim, K.S. Chun, Complex permeability and permittivity and microwave absorption of ferrite-rubber composite at X-band frequencies. IEEE Trans. Magn. 27, 5462–5464 (1991)

    Article  CAS  Google Scholar 

  33. Y. Natio, K. Suetake, Application of ferrite to electromagnetic wave absorber and its characteristics. IEEE Trans. Microw. Theory Tech. 19, 65–72 (1971)

    Article  Google Scholar 

  34. C. Kittel, On the theory of ferromagnetic resonance absorption. Phys. Rev. 73(2), 155–161 (1948)

    Article  CAS  Google Scholar 

  35. H. Zou, S. Li, L. Zhang, S. Yan, H. Wu, S. Zhang, Determining factors for high performance silicone rubber microwave absorbing materials. J. Magn. Magn. Mater. 323, 1643–1651 (2011)

    Article  CAS  Google Scholar 

  36. G.X. Tong, Q. Hu, W.H. Wu, W. Li, H.S. Qian Y. Liang, Submicrometer-sized NiO octahedra: facile one-pot solid synthesis, formation mechanism, and chemical conversion into Ni octahedra with excellent microwave-absorbing properties. J. Mater. Chem. 22, 17494–17504 (2012)

    Article  CAS  Google Scholar 

  37. L.J. Deng, P.H. Zhou, J.L. Xie, L. Zhang, Characterization and microwave resonance in nanocrystalline FeCoNi flake composite. J. Appl. Phys. 101, 103916 (2007)

    Article  Google Scholar 

  38. F. Ma, Y. Qin, Y.Z. Li, Enhanced microwave performance of cobalt nanoflakes with strong shape anisotropy. Appl. Phys. Lett. 96, 202507 (2010)

    Article  Google Scholar 

  39. T. Aoyagi, Y. Shimizu, Design of multilayer wave absorber for oblique incidence using the point frequency matching method. Electron. Commun. Jpn. 3, 105–114 (1995)

    Article  Google Scholar 

  40. X. Huang, J. Zhang, S. Xiao, G. Chen, The cobalt zinc spinel ferrite nanofiber: lightweight and efficient microwave absorber. J. Am. Ceram. Soc. 97(5), 1363–1366 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Material Synthesis Characterization Laboratory, Institute of Advance Technology (ITMA), Universiti Putra Malaysia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Hapishah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hapishah, A.N., Syazwan, M.M. & Hamidon, M.N. Synthesis and characterization of magnetic and microwave absorbing properties in polycrystalline cobalt zinc ferrite (Co0.5Zn0.5Fe2O4) composite. J Mater Sci: Mater Electron 29, 20573–20579 (2018). https://doi.org/10.1007/s10854-018-0192-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-0192-9

Navigation