Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 24, pp 20573–20579 | Cite as

Synthesis and characterization of magnetic and microwave absorbing properties in polycrystalline cobalt zinc ferrite (Co0.5Zn0.5Fe2O4) composite

  • A. N. HapishahEmail author
  • M. M. Syazwan
  • M. N. Hamidon


In this research work, magnetic and microwave absorption loss and other response characteristics in cobalt zinc ferrite composite has been studied. Cobalt zinc ferrite with the composition of Co0.5Zn0.5Fe2O4 was prepared via high energy ball milling followed by sintering. Phase characteristics of the as-prepared sample by using XRD analysis shows evidently that a high crystalline ferrite has been formed with the assists of thermal energy by sintering at 1250 °C which subsequently changes the magnetic properties of the ferrite. A high magnetic permeability and losses was obtained from ferrite with zinc content. Zn substitution into cobalt ferrite has altered the cation distribution between A and B sites in spinel ferrite which contributed to higher magnetic properties. Specifically, Co0.5Zn0.5Fe2O4 provides electromagnetic wave absorption characteristics. It was found that cobalt zinc ferrite sample is highly potential for microwave absorber which showed the highest reflection loss (RL) value of − 24.5 dB at 8.6 GHz. This material can potentially minimize EMI interferences in the measured frequency range, and was therefore used as fillers in the prepared composite that is applied for microwave absorbing material.



The authors are grateful to Material Synthesis Characterization Laboratory, Institute of Advance Technology (ITMA), Universiti Putra Malaysia.


  1. 1.
    J. Luo, Y. Zuo, P. Shen, Z. Yan, K. Zhang, Excellent microwave absorption properties by tuned electromagnetic parameters in polyaniline coated Ba0.9La0.1Fe11.9Ni0.1O19/reduced graphene oxide nanocomposites. RSC Adv. 7, 36433–36443 (2017)CrossRefGoogle Scholar
  2. 2.
    Y.B. Feng, T. Qiu, C.Y. Shen, X.Y. Li, Electromagnetic and absorption properties of carbonyl iron/rubber radar absorbing materials. IEEE Trans. Magn. 42, 363–368 (2006)CrossRefGoogle Scholar
  3. 3.
    P.J. Bora, K.J. Vinoy, P.C. Ramamurthy, G. Madras, Electromagnetic interference shielding effectiveness of polyaniline-nickel oxide coated cenosphere composite film. Compos. Commun. 4, 37–42 (2017)CrossRefGoogle Scholar
  4. 4.
    H. Wu, S. Qu, K. Lin, Y. Qing, L. Wang, Y. Fan, Q. Fu, F. Zhang, Enhanced low-frequency microwave absorbing property of SCFs@TiO2 composite. Powder Technol. 333, 153–159 (2018)CrossRefGoogle Scholar
  5. 5.
    H. Wu, G. Wu, Y. Ren, X. Li, L. Wang, Multishelled metal oxide hollow spheres: easy synthesis and formation mechanism. Chem.-A Eur. J. 22, 8864–8871 (2016)CrossRefGoogle Scholar
  6. 6.
    H. Wu, G. Wu, L. Wang, Peculiar porous α-Fe2O3, γ-Fe2O3 and Fe3O4 nanospheres: facile synthesis and electromagnetic properties. Powder Technol. 269, 443–451 (2015)CrossRefGoogle Scholar
  7. 7.
    H. Wu, G. Wu, Y. Ren, L. Yang, L. Wang, X. Li, Co2+/Co3+ ratio dependence of electromagnetic wave absorption in hierarchical NiCo2O4–CoNiO2 hybrids. J. Mater. Chem. C 3, 7677–7690 (2015)CrossRefGoogle Scholar
  8. 8.
    G. Wu, Y. Cheng, Y. Ren, Y. Wang, Z. Wang, H. Wu, Synthesis and characterization of γ-Fe2O3@C nanorod-carbon sphere composite and its application as microwave absorbing material. J. Alloys Compd. 652, 346–350 (2015)CrossRefGoogle Scholar
  9. 9.
    G. Wu, Y. Cheng, F. Xiang, Z. Jia, Q. Xie, G. Wu, H. Wu, Morphology-controlled synthesis, characterization and microwave absorption properties of nanostructured 3D CeO2. Mater. Sci. Semicond. Process. 41, 6–11 (2016)CrossRefGoogle Scholar
  10. 10.
    G. Wu, Y. Cheng, Q. Xie, Z. Jia, F. Xiang, H. Wu, Facile synthesis of urchin-like ZnO hollow spheres with enhanced electromagnetic wave absorption properties. Mater. Lett. 144, 157–160 (2015)CrossRefGoogle Scholar
  11. 11.
    T. Kagotani, R. Kobayashi, S. Sugimoto, K. Inomata, K. Okayama, J. Akedo, Magnetic properties and microwave characteristics of Ni Zn Cu ferrite film fabricated by aerosol deposition method. J. Magn. Magn. Mater. 290–291, 1442–1445 (2005)CrossRefGoogle Scholar
  12. 12.
    P.J. Bora, M. Porwal, K.J. Vinoy, P.C. Ramamurthy, G. Madras, Industrial waste fly ash cenosphere composites based broad band microwave absorber. Compos. Part B 134, 151–163 (2018)CrossRefGoogle Scholar
  13. 13.
    T.K. Gupta, B.P. Singh, R.B. Mathura, S.R. Dhakate, Multi-walled carbon nanotube–graphene–polyaniline multiphase nanocomposite with superior electromagnetic shielding effectiveness. Nanoscale 6, 842–851 (2014)CrossRefGoogle Scholar
  14. 14.
    P.J. Bora, G. Lakhani, P.C. Ramamurthy, G. Madras, Poly(vinylbutyral) -polyanilinemagnetically functionalized fly ash cenosphere composite film for electromagnetic interference shielding. Compos. Part B: Eng. 106, 224–233 (2016)CrossRefGoogle Scholar
  15. 15.
    R.C. Handley, Modern magnetic materials: principles and applications.(Wiley-Interscience Publication, Hoboken, 2000)Google Scholar
  16. 16.
    W. Fu, S. Liu, W. Fan, H. Yang, X. Pang, J. Xu, G. Zou, Hollow glass microspheres coated with CoFe2O4 and its microwave absorption property. J. Magn. Magn. Mater. 316, 54–58 (2007)CrossRefGoogle Scholar
  17. 17.
    E. Manova, B. Kunev, D. Paneva, I. Mitov, L. Petrov, Mechanosynthesis, characterization, and magnetic properties of nanoparticles of cobalt ferrite, CoFe2O4. Chem. Mater. 16, 5689–5696 (2004)CrossRefGoogle Scholar
  18. 18.
    J. Cao, W. Fu, H. Yang, Q. Yu, Y. Zhang, S. Liu, P. Sun, X. Zhou, Large-scale synthesis and microwave absorption enhancement of actinomorphictubular ZnO/CoFe2O4 nanocomposites. J. Phys. Chem. B 113, 4642–4647 (2009)CrossRefGoogle Scholar
  19. 19.
    J. Wan, X. Wang, Y. Wu, M. Zeng, Y. Wang, H. Jiang, W. Zhou, G. Wang, Magnetoelectric CoFe2O4–Pb(Zr,Ti)O3 composite thin films derived by a sol-gel process. Appl. Phys. Lett. 86, 122501 (2005)CrossRefGoogle Scholar
  20. 20.
    S.B. Waje, M. Hashim, W.D.W. Yusoff, Z. Abbas, Sintering temperature dependence of room temperature magnetic and dielectric properties of Co0.5Zn0.5Fe2O4 prepared using mechanically alloyed nanoparticles. J. Magn. Magn. Mater. 322, 686–691 (2010)CrossRefGoogle Scholar
  21. 21.
    M.A.N. Ismail, M. Hashim, A. Hajalilou, I. Ismail, M.M.M. Zulkimi, N.H. Abdullah, W.N.A. Rahman, M.S. Abdullah, M. Manap, Magnetic properties of mechanically alloyed cobalt-zinc ferrite nanoparticles. J. Supercond. Novel Magn. 27, 1293–1298 (2014)CrossRefGoogle Scholar
  22. 22.
    A. Poorbafrani, E. Kiani, Enhanced microwave absorption properties in cobalt–zinc ferrite based nanocomposites. J. Magn. Magn. Mater. 416, 10–14 (2016)CrossRefGoogle Scholar
  23. 23.
    I.R. Ibrahim, M. Hashim, R. Nazlan, I. Ismail, W.N.A. Rahman, N.H. Abdullah, F.M. Idris, M.S.E. Shafie, M.M.M. Zulkimi, Grouping trends of magnetic permeability components in their parallel evolution with microstructure in Ni0.3Zn0.7Fe2O4. J. Magn. Magn. Mater. 355, 265–275 (2014)CrossRefGoogle Scholar
  24. 24.
    I. Ismail, M. Hashim, K.A. Matori, R. Alias, J. Hassan, Dependence of magnetic properties and microstructure of mechanically alloyed Ni0.5Zn0.5Fe2O4 on soaking time. J. Magn. Magn. Mater. 324(16), 2463–2470 (2018)CrossRefGoogle Scholar
  25. 25.
    M.S. Mustaffa, M. Hashim, R.S. Azis, I. Ismail, S. Kanagesan, M.M. Zulkimi, Magnetic phase-transition dependence on nano-to-micron grain-size microstructural changes of mechanically alloyed and sintered Ni0.6Zn0.4Fe2 O 4. J. Supercond. Novel Magn. 27, 1451–1462 (2014)CrossRefGoogle Scholar
  26. 26.
    A. Verma, T.C. Goel, R.G. Mendiratta, P. Kishan, Magnetic properties of nickel-zinc ferrites prepared by the citrate precursor method. J. Magn. Magn. Mater. 208, 13–19 (2000)CrossRefGoogle Scholar
  27. 27.
    S.O. Chikazumi, S.H. Charap, Physics of Magnetism (John Wiley, New York, 1964)Google Scholar
  28. 28.
    L. Neel, Magnetic properties of ferrites: ferrimagnetism and antiferromagnetism. Ann. Phys. 3, 137–198 (1948)CrossRefGoogle Scholar
  29. 29.
    S. Morup, Superparamagnetism and spin glass ordering in magnetic nanocomposites. Europhys. Lett. 28, 671–676 (1994)CrossRefGoogle Scholar
  30. 30.
    R. Adhikari, A. Sarkar, M.V. Limaye, S.K. Kulkarni, A.K. Das, Variation and sign change of magnetostrictive strain as a function of Ni concentration in Ni-substituted ZnFe2O4 sintered nanoparticles. J. Appl. Phys. 111, 073903 (2012)CrossRefGoogle Scholar
  31. 31.
    C.N. Chinnasamy, A. Narayanasamy, N. Ponpandian, K. Chattopadhyay, H. Guerault, J.M. Greneche, Magnetic properties of nanostructured ferrimagnetic zinc ferrite. J. Phys.: Condensed Matter-IOPsci. 12(35), 7795–7805 (2000)Google Scholar
  32. 32.
    S.S. Kim, S.B. Jo, K.I. Gueon, K.K. Choi, J.M. Kim, K.S. Chun, Complex permeability and permittivity and microwave absorption of ferrite-rubber composite at X-band frequencies. IEEE Trans. Magn. 27, 5462–5464 (1991)CrossRefGoogle Scholar
  33. 33.
    Y. Natio, K. Suetake, Application of ferrite to electromagnetic wave absorber and its characteristics. IEEE Trans. Microw. Theory Tech. 19, 65–72 (1971)CrossRefGoogle Scholar
  34. 34.
    C. Kittel, On the theory of ferromagnetic resonance absorption. Phys. Rev. 73(2), 155–161 (1948)CrossRefGoogle Scholar
  35. 35.
    H. Zou, S. Li, L. Zhang, S. Yan, H. Wu, S. Zhang, Determining factors for high performance silicone rubber microwave absorbing materials. J. Magn. Magn. Mater. 323, 1643–1651 (2011)CrossRefGoogle Scholar
  36. 36.
    G.X. Tong, Q. Hu, W.H. Wu, W. Li, H.S. Qian Y. Liang, Submicrometer-sized NiO octahedra: facile one-pot solid synthesis, formation mechanism, and chemical conversion into Ni octahedra with excellent microwave-absorbing properties. J. Mater. Chem. 22, 17494–17504 (2012)CrossRefGoogle Scholar
  37. 37.
    L.J. Deng, P.H. Zhou, J.L. Xie, L. Zhang, Characterization and microwave resonance in nanocrystalline FeCoNi flake composite. J. Appl. Phys. 101, 103916 (2007)CrossRefGoogle Scholar
  38. 38.
    F. Ma, Y. Qin, Y.Z. Li, Enhanced microwave performance of cobalt nanoflakes with strong shape anisotropy. Appl. Phys. Lett. 96, 202507 (2010)CrossRefGoogle Scholar
  39. 39.
    T. Aoyagi, Y. Shimizu, Design of multilayer wave absorber for oblique incidence using the point frequency matching method. Electron. Commun. Jpn. 3, 105–114 (1995)CrossRefGoogle Scholar
  40. 40.
    X. Huang, J. Zhang, S. Xiao, G. Chen, The cobalt zinc spinel ferrite nanofiber: lightweight and efficient microwave absorber. J. Am. Ceram. Soc. 97(5), 1363–1366 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Functional Devices Laboratory, Institute of Advanced TechnologyUniversity Putra MalaysiaSerdangMalaysia
  2. 2.Physics Department, Faculty of ScienceUniversity Putra MalaysiaSerdangMalaysia

Personalised recommendations