Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 24, pp 20564–20572 | Cite as

Successful synthesis of interconnected Co0.85Se nanosheets with high pore volume and its electrochemical performance in supercapacitors

  • Xiaobo ChenEmail author
  • Kechun Mao
  • Chengxin Yang
  • Jingjin Ni
  • Guoce Zhuang
  • Haitao Huang
  • Xiaohua Wang
  • Peizhi YangEmail author


Interconnected Co0.85Se nanosheets have been prepared by a facile hydrothermal method via tuning reaction time to control the chemical constitution and the morphology. The nanosheets morphology of Co0.85Se offers sufficient electron transfer and short ion diffusion pathway, which can favor the fast transfer of electrolyte ions. The Co0.85Se electrode exhibits specific capacitance of 980 F g− 1 at 10 A g− 1 with high cycling life stability (8.3% loss after 5000 cycles) and good conductivity. The assembled Co0.85Se//AC asymmetric supercapacitor (ASC) device exhibits a high energy density of 46.2 Wh kg− 1 at a power density of 807.4 W kg− 1 and still maintained 29.3 Wh kg− 1 at a power density of 15981.8 W kg− 1 with excellent cycling performance (90.01% capacitance retention over 5000 cycles). The impressive results indicate that such unique interconnected Co0.85Se nanosheets are promising electrode materials for high-performance supercapacitors.



This work was supported by the National Natural Science Foundation of China (Grant No. 11747001), The Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant No. 17KJB140029) and the Key Applied Basic Research Program of Yunnan Province (Grant No. 2017FA024).

Supplementary material

10854_2018_191_MOESM1_ESM.docx (988 kb)
Supplementary material 1 (DOCX 987 KB)


  1. 1.
    S. Chen, J. Zhu, X. Wu, Q. Han, X. Wang, Acs Nano 4, 2822 (2010)CrossRefGoogle Scholar
  2. 2.
    C.X. Guo, C.M. Li, Energy Environ. Sci. 4, 4504 (2011)CrossRefGoogle Scholar
  3. 3.
    M. Zhi, C. Xiang, J. Li, M. Li, N. Wu, Nanoscale 5, 72 (2012)CrossRefGoogle Scholar
  4. 4.
    C. Meng, C. Liu, L. Chen, C. Hu, S. Fan, Nano Lett. 10, 4025 (2010)CrossRefGoogle Scholar
  5. 5.
    F.K. Butt, A.S. Bandarenka, J. Solid State Electrochem. 20, 2915 (2016)CrossRefGoogle Scholar
  6. 6.
    Z.S. Wu, W. Ren, D.W. Wang, F. Li, B. Liu, H.M. Cheng, ACS Nano 4, 5835 (2010)CrossRefGoogle Scholar
  7. 7.
    H. Wang, H.S. Casalongue, Y. Liang, H. Dai, J. Am. Chem. Soc. 132, 7472 (2010)CrossRefGoogle Scholar
  8. 8.
    J. Liu, J. Jiang, C. Cheng, H. Li, J. Zhang, H. Gong, H.J. Fan, Adv. Mater. 23, 2076 (2011)CrossRefGoogle Scholar
  9. 9.
    B.J. Lokhande, R.C. Ambare, R.S. Mane, S.R. Bharadwaj, Curr. Appl. Phys. 13, 985 (2013)CrossRefGoogle Scholar
  10. 10.
    R.C. Ambare, S.R. Bharadwaj, B.J. Lokhande, Appl. Surf. Sci. 349, 887 (2015)CrossRefGoogle Scholar
  11. 11.
    R.C. Ambare, P. Shinde, U.T. Nakate, B.J. Lokhande, R.S. Mane, Appl. Surf. Sci. 453, 214 (2018)CrossRefGoogle Scholar
  12. 12.
    R.C. Ambare, R.S. Mane, B.J. Lokhande, Int. J. Adv. Res. 3, 1943 (2016)Google Scholar
  13. 13.
    J. Zhu, L. Xiang, D. Xi, Y. Zhou, J. Yang, Bull. Mater. Sci. 41, 54 (2018)CrossRefGoogle Scholar
  14. 14.
    J. Guo, X. Zhang, Y. Sun, X. Zhang, L. Tang, X. Zhang, J. Power Sources 355, 31 (2017)CrossRefGoogle Scholar
  15. 15.
    X. Yang, L. Zhao, J. Lian, J. Power Sources 343, 373 (2017)CrossRefGoogle Scholar
  16. 16.
    X. Ma, L. Zhang, G. Xu, C. Zhang, H. Song, Y. He, C. Zhang, D. Jia, Chem. Eng. J. 320, 22 (2017)CrossRefGoogle Scholar
  17. 17.
    D. Chakravarty, D.J. Late, RSC Adv. 5, 21700 (2015)CrossRefGoogle Scholar
  18. 18.
    S.J. Patil, V.C. Lokhande, N.R. Chodankar, C.D. Lokhande, J. Colloid Interface Sci. 469, 318 (2016)CrossRefGoogle Scholar
  19. 19.
    C.V.V.M. Gopi, A.E. Reddy, H.J. Kim, J. Mater. Chem. A 6, 7439 (2018)CrossRefGoogle Scholar
  20. 20.
    S.U. Rehman, F.K. Butt, F. Hayat, B.U. Haq, Z. Tariq, F. Aleem, C. Li, J. Alloy. Compd. 733, 22 (2018)CrossRefGoogle Scholar
  21. 21.
    L.Z. Fan, J. Maier, Electrochem. Commun. 8, 937 (2006)CrossRefGoogle Scholar
  22. 22.
    K. Zhang, L.L. Zhang, X.S. Zhao, J. Wu, Chem. Mater. 22, 1392 (2010)CrossRefGoogle Scholar
  23. 23.
    A. Banerjee, S. Bhatnagar, K.K. Upadhyay, P. Yadav, S. Ogale, ACS Appl. Mater. Interfaces 6, 18844 (2014)CrossRefGoogle Scholar
  24. 24.
    H. Peng, G. Ma, K. Sun, Z. Zhang, J. Li, X. Zhou, Z. Lei, J. Power Sources 297, 351 (2015)CrossRefGoogle Scholar
  25. 25.
    C. Gong, M. Huang, P. Zhou, Z. Sun, L. Fan, J. Lin, J. Wu, Appl. Surf. Sci. 362, 469 (2016)CrossRefGoogle Scholar
  26. 26.
    S. Liu, S. Sun, X.Z. You, Nanoscale 6, 2037 (2014)CrossRefGoogle Scholar
  27. 27.
    G. Wang, L. Zhang, J. Zhang, Chem. Soc. Rev. 41, 797 (2012)CrossRefGoogle Scholar
  28. 28.
    J. Yan, Q. Wang, T. Wei, Z. Fan, Adv. Energy Mater. 4, 1300816 (2014)CrossRefGoogle Scholar
  29. 29.
    W. Zhang, C. Ma, J. Fang, J. Cheng, X. Zhang, S. Dong, L. Zhang, RSC Adv. 3, 2483 (2013)CrossRefGoogle Scholar
  30. 30.
    H.B. Li, M.H. Yu, F.X. Wang, P. Liu, Y. Liang, J. Xiao, C.X. Wang, Y.X. Tong, G.W. Yang, Nat. Commun. 4, 1894 (2013)CrossRefGoogle Scholar
  31. 31.
    H. Chen, S. Chen, M. Fan, C. Li, D. Chen, G. Tian, K. Shu, J. Mater. Chem. A 3, 23653 (2015)CrossRefGoogle Scholar
  32. 32.
    B. Wang, J. Park, D. Su, C. Wang, H. Ahn, G. Wang, J. Mater. Chem. 22, 15750 (2012)CrossRefGoogle Scholar
  33. 33.
    J.B. Rivest, P.K. Jain, Chem. Soc. Rev. 42, 89 (2012)CrossRefGoogle Scholar
  34. 34.
    Z. Wang, Q. Sha, F. Zhang, J. Pu, W. Zhang, CrystEngComm 15, 5928 (2013)CrossRefGoogle Scholar
  35. 35.
    J. Yang, Y. Yuan, W. Wang, H. Tang, Z. Ye, J. Lu, J. Power Sources 340, 6 (2017)CrossRefGoogle Scholar
  36. 36.
    J. Zhang, H. Feng, Q. Qin, G. Zhang, Y. Cui, Z. Chai, W. Zheng, J. Mater. Chem. A 4, 6357 (2016)CrossRefGoogle Scholar
  37. 37.
    P. Syedvali, G. Rajeshkhanna, E. Umesh babu, G.U. kiran, G.R. Rao, P. Justin, RSC Adv. 5, 38407 (2015)CrossRefGoogle Scholar
  38. 38.
    S. Vijayakumar, S. Nagamuthu, G. Muralidharan, ACS Sustain. Chem. Eng. 1, 1110 (2013)CrossRefGoogle Scholar
  39. 39.
    G. Nagaraju, G.S. Raju, Y.H. Ko, J.S. Yu, Nanoscale 8, 812 (2015)CrossRefGoogle Scholar
  40. 40.
    D. Zhang, X. Zhou, K. Ye, Y. Li, C. Song, K. Cheng, D. Cao, G. Wang, Q. Li, Electrochim. Acta 173, 209 (2015)CrossRefGoogle Scholar
  41. 41.
    V. Subramanian, S.C. Hall, P.H. Smith, B. Rambabu, Solid State Ion. 175, 511 (2004)CrossRefGoogle Scholar
  42. 42.
    J. Yan, Z. Fan, W. Sun, G. Ning, T. Wei, Q. Zhang, R. Zhang, L. Zhi, F. Wei, Adv. Funct. Mater. 22, 2632 (2012)CrossRefGoogle Scholar
  43. 43.
    S. Peng, L. Li, H.B. Wu, S. Madhavi, X.W. Lou, Adv. Energy Mater. 5, 1401172 (2015)CrossRefGoogle Scholar
  44. 44.
    H. Xu, C. Zhang, W. Zhou, G.R. Li, Nanoscale 7, 16932 (2015)CrossRefGoogle Scholar
  45. 45.
    J. Liu, J. Jiang, M. Bosman, H.J. Fan, J. Mater. Chem. 22, 2419 (2012)CrossRefGoogle Scholar
  46. 46.
    L.Q. Fan, G.J. Liu, J.H. Wu, L. Liu, J.M. Lin, Y.L. Wei, Electrochim. Acta 137, 26 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of New Energy and Electronic EngineeringYancheng Teachers UniversityYanchengPeople’s Republic of China
  2. 2.Key Laboratory of Education Ministry for Advance Technique and Preparation of Renewable Energy Materials, Institute of Solar EnergyYunnan Normal UniversityKunmingPeople’s Republic of China

Personalised recommendations