Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 29, Issue 24, pp 20554–20563 | Cite as

Enhancement of melt-spun process Bi–Ag lead-free solder for high temperature applications

  • Rizk Mostafa ShalabyEmail author
  • Musaeed Mohammed Allzeleh
  • Mustafa Kamal
Article
  • 238 Downloads

Abstract

The enhancement of lead free solders has emerged as one of the most important issues in the electronics assembling industries. Bi–Ag hypo and eutectic alloys have been considerd as one of the lead free solders that can replace the Pb–Sn solder for high temperature applications. This study investigates the effect of various compositions of silver on the mechanical, thermal and electrical properties of the melt-spun process Bi–Ag hypo and eutectic alloys was directionally solidified using copper wheel technology.The microhardness (Hv), creep resistance were measured from solidified ribbons.The results showed that presence of α-Bi phase, Ag99.5Bi0.5 (with a cubic structure Fm-3m) and Ag0.97Bi0.03 (with a cubic structure Fm-3m) embedded in Bi matrix. Furthermore, the eutectic composition Bi—2.5 wt% Ag shows the more regular microstructure than hypo eutectic composition. It is also concluded that the solderability of solder is significantly imported due to the surface tension of molten Bi–Ag lead-free solder decreases with the Ag content. The obtained results show a surprising desirable decrease in melting temperature with increasing Ag from 269 to 261 °C. Also, it was found that the eutectic composition Bi—2.5 Ag exhibit good mechanical properties superior to hypo-eutectic composition.

References

  1. 1.
    N. Kang, H.S. Na, S.J. Kim, C.Y. Kang, J. Alloys Compd. 467, 246–250 (2009).  https://doi.org/10.1016/j.jallcom.2007.12.048 CrossRefGoogle Scholar
  2. 2.
    J. Shen, Y. Liu, H. Gao, J. Chin. Sci. Bull. 51, 1766–1770 (2006).  https://doi.org/10.1007/s11434-006-2043-y CrossRefGoogle Scholar
  3. 3.
    R. Rosilli, A. Hanim, M. Ariff, J. Sci. Technol. 22, 1–13 (2014)Google Scholar
  4. 4.
    Y. Shi, W. Fang, Z. Xia, Y. Lei, F. Guo, X. Li, J. Mater. Sci. Mater. Electron. 21, 875–888 (2010).  https://doi.org/10.1007/s10854-009-0010-5 CrossRefGoogle Scholar
  5. 5.
    J.H. Kim, S.W. Jeong, H.M. Lee, J. Mater. Trans. 43, 1873–1878 (2002).  https://doi.org/10.1016/S1359-6454(96)00253-4 CrossRefGoogle Scholar
  6. 6.
    M.Z. Shahrul Fadzli, M.A. Azmah Hanim, T. Sai Hong, A. Aidy, R. Rohaizuan, J. Adv. Mater. Res. 476–478, 1163–1168 (2012).  https://doi.org/10.4028/www.scientific.net/AMR.476-478.1163 CrossRefGoogle Scholar
  7. 7.
    J.Y. Tsai, C.W. Chang, C.E. Ho, Y.L. Lin, C.R. Kao, J. Electron. Mater. 35, 65–71 (2006).  https://doi.org/10.1007/s11664-006-0185-y CrossRefGoogle Scholar
  8. 8.
    J.Y. Tsai, C.W. Chang, Y.C. Shieh, Y.C. Hu, C.R. Kao, J. Electron. Mater. 34, 1–6 (2005).  https://doi.org/10.1007/s11664-005-0231-1 CrossRefGoogle Scholar
  9. 9.
    M. Rettenmayr, P. Lambracht, B. Kempf, M. Graff, J. Adv. Eng. Mater. 7, 965–969 (2005).  https://doi.org/10.1002/adem.200500124 CrossRefGoogle Scholar
  10. 10.
    W.R. Osório, L.C. Peixoto, L.R. Garcia, N. Mangelinck-Noël, A. Garcia, Sn-Ag and Sn-Zn lead-free solder alloys. J. Alloys Compd. 572, 97–106 (2013).  https://doi.org/10.1016/j.jallcom.2013.03.234 CrossRefGoogle Scholar
  11. 11.
    M. Hansen, K. Anderko, H. Salzberg, J. Electrochem. Soc. 105, 260C–261C (1958)CrossRefGoogle Scholar
  12. 12.
    J.N. Lalena, N.F. Dean, M.W. Weiser, J. Electron. Mater. 31, 1244–1249 (2002).  https://doi.org/10.1007/s11664-002-0016-8 CrossRefGoogle Scholar
  13. 13.
    J.-M. Song, H.-Y. Chuang, Mater. Trans. 50, 1902–1904 (2009).  https://doi.org/10.2320/matertrans.M2009089 CrossRefGoogle Scholar
  14. 14.
    R.M. Shalaby, Int. J. Phys. Res. 3, 1–6 (2013)Google Scholar
  15. 15.
    R.M. Shalaby, M. Kamal, A.M. Shaban, M. El-Kady, in Second International conference on Engineering Mathematics and physics (ICEMP-94), Cairo, pp. 107–121 (1994)Google Scholar
  16. 16.
    H.H. Liebermann, J. Mater. Sci. Eng. 43, 203–210 (1980).  https://doi.org/10.1016/0025-5416(80)90103-2 CrossRefGoogle Scholar
  17. 17.
    W. Home-Rothery, H. Powell, Z. Für Krist. 91, 23–47 (1935).  https://doi.org/10.1524/zkri.1935.91.1.23 CrossRefGoogle Scholar
  18. 18.
    B.D. Cullity, J.W. Weymouth, Am. J. Phys. 25, 394–395 (1957)CrossRefGoogle Scholar
  19. 19.
    J. Glazer, J. Electron. Mater. 23, 693–700 (1994)CrossRefGoogle Scholar
  20. 20.
    R.M. Shalaby, J. Mater. Sci. Eng. A 560, 86–95 (2013).  https://doi.org/10.1016/j.msea.2012.09.038 CrossRefGoogle Scholar
  21. 21.
    J.M. Song, Z.M. Wu, D.A. Huang, J. Scr. Mater. 56, 413–416 (2007).  https://doi.org/10.1016/j.scriptamat.2006.10.044 CrossRefGoogle Scholar
  22. 22.
    M. Kamal, E.-S. Gouda, Mater. Manuf. Process. 21, 736–740 (2006).  https://doi.org/10.1080/10426910600727890 CrossRefGoogle Scholar
  23. 23.
    R.M. Shalaby, J. Alloys Compd. 480, 334–339 (2009).  https://doi.org/10.1016/j.jallcom.2009.02.013 CrossRefGoogle Scholar
  24. 24.
    R.M. Shalaby, J. Mater. Sci. Mater. Electron. 16, 187–191 (2005)CrossRefGoogle Scholar
  25. 25.
    R.M. Shalaby, J. Alloys Compd. 505, 113–117 (2010).  https://doi.org/10.1016/j.jallcom.2010.05.179 CrossRefGoogle Scholar
  26. 26.
    R.M. Shalaby, J. Mater. Sci. Mater. Electron. 26, 6625–6632 (2015).  https://doi.org/10.1007/s10854-015-3261-3 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Rizk Mostafa Shalaby
    • 1
    Email author
  • Musaeed Mohammed Allzeleh
    • 1
    • 2
  • Mustafa Kamal
    • 1
  1. 1.Metal Physics Lab, Physics Department, Faculty of ScienceMansoura UniversityMansouraEgypt
  2. 2.Ministry of Higher EducationSanaaYemen

Personalised recommendations