Skip to main content

Advertisement

Log in

Facile hydrothermally synthesis of hexagon tin disulfide nanosheets for high-performance photocatalytic hydrogen generation

  • Review
  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Tin disulfide (SnS2) has been attracted intensive attention in the field of photoelectric conversion due to its appropriate band gap and glorious electronic mobility. The hexagon SnS2 nanosheets has been successfully integrated through a facile one-pot hydrothermal method. SEM images, Raman spectra, atomic force microscope and X-ray diffraction patterns are measured to carry out to investigate the morphologies and microstructures of SnS2 nanosheetsm, confirming a good crystallized SnS2. Then, the photochemical activity of as-prepared SnS2 nanosheets were tested in the electrolyte of Na2SO4. Photoelectrochemical tests demonstrate that the photocurrent density of as-prepared hexagon SnS2 nanosheets (1.66 µA/cm2 at a light intensity of 140 mW/cm2) is hugely increased with increasing light intensity. Furthermore, after 50 cycles, the photocurrent density does not change significantly, indicating that the as-prepared SnS2 nanosheets possesses superior stabilities. The outstanding photocatalytic performances of SnS2 nanosheets are not only resulted from its huge specific surface area, which can harvest more light and provide more active sites, but also attributed to its superior charge mobility, which can facilitate the separation photogenerated electron–hole pairs and the charge transfer between SnS2 nanosheets and the electrode. The most important is that our work reveals the hexagonal SnS2 nanosheets not only possess superior photoelectrochemical properties, but also have great potential applications in energy conversion and photodetector fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. F. Zhang, J. Zhu, D. Zhang, U. Schwingenschlögl, HN Alshareef, Nano Lett. 17, 1302–1311 (2017)

    Article  CAS  Google Scholar 

  2. V. Podzorov, M. Gershenson, C. Kloc, R. Zeis, E. Bucher, Appl. Phys. Lett. 84, 3301–3303 (2004)

    Article  CAS  Google Scholar 

  3. W.-F. Chen, C.-H. Wang, K. Sasaki et al., Energy Environ. Sci. 6, 943–951 (2013)

    Article  CAS  Google Scholar 

  4. A. Hosseini, P. Kar, L.-H. Hsieh et al., J. Nanosci. Nanotechnol. 17, 5119–5123 (2017)

    Article  CAS  Google Scholar 

  5. Y. Huang, X. Zhan, K. Xu et al., Appl. Phys. Lett. 108, 013101 (2016)

    Article  Google Scholar 

  6. J. Chen, X.J. Wu, L. Yin et al., Angew. Chem. 54, 1210 (2015)

    Article  CAS  Google Scholar 

  7. P. Kar, S. Farsinezhad, X. Zhang, K. Shankar, Nanoscale 6, 14305–14318 (2014)

    Article  CAS  Google Scholar 

  8. W. Septina, S. Ikeda, T. Harada, T. Minegishi, K. Domen, M. Matsumura, Chem. Commun. 50, 8941–8943 (2014)

    Article  Google Scholar 

  9. Z.-X. Chang, W.-H. Zhou, D.-X. Kou, Z.-J. Zhou, S.-X. Wu, Chem. Commun. 50, 12726–12729 (2014)

    Article  CAS  Google Scholar 

  10. L.A. Burton, T.J. Whittles, D. Hesp et al., J. Mater. Chem. A 4, 1312–1318 (2016)

    Article  CAS  Google Scholar 

  11. J. Chao, Z. Xie, X. Duan et al., CrystEngComm 14, 3163–3168 (2012)

    Article  CAS  Google Scholar 

  12. N. Anitha, M. Anitha, J.R. Mohamed, S. Valanarasu, L. Amalraj, J. Mater. Sci. Mater. Electron. 29, 11529–11539 (2018)

    Article  CAS  Google Scholar 

  13. X. Ren, J. Zhou, X. Qi et al., Adv. Energy Mater. 7, 1700396 (2017)

    Article  Google Scholar 

  14. D. De, J. Manongdo, S. See, V. Zhang, A. Guloy, H. Peng, Nanotechnology 24, 025202 (2012)

    Article  Google Scholar 

  15. G. Su, V.G. Hadjiev, P.E. Loya et al., Nano Lett. 15, 506–513 (2014)

    Article  Google Scholar 

  16. H. Song, S. Li, L. Gao et al., Nanoscale 5, 9666–9670 (2013)

    Article  CAS  Google Scholar 

  17. X. Chen, Z. Huang, X. Ren et al., ChemNanoMat 4, 373–378 (2018)

    Article  CAS  Google Scholar 

  18. Q. Li, A. Wei, Z. Guo, J. Liu, Y. Zhao, Z. Xiao, J. Mater. Sci. Mater. Electron. 29, 16057–16063 (2018)

    Article  CAS  Google Scholar 

  19. Y.C. Zhang, Z.N. Du, K.W. Li, M. Zhang, Sep. Purif. Technol. 81, 101–107 (2011)

    Article  CAS  Google Scholar 

  20. H. Liu, Y. Su, P. Chen, Y. Wang, J. Mol. Catal. A Chem. 378, 285–292 (2013)

    Article  CAS  Google Scholar 

  21. J. Yu, C.-Y. Xu, F.-X. Ma, S.-P. Hu, Y.-W. Zhang, L. Zhen, ACS Appl. Mater. Interfaces 6, 22370–22377 (2014)

    Article  CAS  Google Scholar 

  22. S. Park, J. Park, R. Selvaraj, Y. Kim, J. Ind. Eng. Chem. 31, 269–275 (2015)

    Article  CAS  Google Scholar 

  23. H. Tang, X. Qi, Z. Zhang et al., Ceram. Int. 42, 6572–6580 (2016)

    Article  CAS  Google Scholar 

  24. Y. Hu, X. Ren, H. Qiao, Z. Huang, X. Qi, J. Zhong, Solar Energy 157, 905–910 (2017)

    Article  CAS  Google Scholar 

  25. W. Han, L. Ren, L. Gong et al., ACS Sustain. Chem. Eng. 2, 741–748 (2014)

    Article  CAS  Google Scholar 

  26. W. Han, L. Ren, X. Qi et al., Appl. Surf. Sci. 299, 12–18 (2014)

    Article  CAS  Google Scholar 

  27. J. Xia, D. Zhu, L. Wang, B. Huang, X. Huang, XM Meng, Adv. Funct. Mater. 25, 4255–4261 (2015)

    Article  CAS  Google Scholar 

  28. G. Su, V.G. Hadjiev, P.E. Loya et al., Nano Lett. 15, 506 (2015)

    Article  CAS  Google Scholar 

  29. X. Zhou, Q. Zhang, L. Gan, H. Li, T. Zhai, Adv. Funct. Mater. 26, 4405–4413 (2016)

    Article  CAS  Google Scholar 

  30. K.V. Zaitsev, V.A. Tafeenko, Y.F. Oprunenko et al., Chem. Asian J. 12, 1240–1249 (2017)

    Article  CAS  Google Scholar 

  31. Q.X. Gao, X.F. Wang, Y.R. Tao, XC Wu, Sci. Adv. Mater. 4, 327–331 (2012)

    Article  CAS  Google Scholar 

  32. C. Luo, X. Ren, Z. Dai, Y. Zhang, X. Qi, C. Pan, ACS Appl. Mater. Interfaces. 9, 23265–23286 (2017)

    Article  CAS  Google Scholar 

  33. G. Domingo, R.S. Itoga, C.R. Kannewurf, Phys. Rev. 143, 536–541 (1966)

    Article  CAS  Google Scholar 

  34. M. Kozak, Thin Solid Films 121, 227–232(1984)

    Article  Google Scholar 

  35. S. Banerjee, S.K. Mohapatra, P.P. Das, M. Misra, Chem. Mater. 20, 6784–6791 (2008)

    Article  CAS  Google Scholar 

  36. Z. Li, H. Qiao, Z. Guo et al., Adv. Funct. Mater. 28, 1705237 (2018)

    Article  Google Scholar 

  37. X. Ren, Z. Li, Z. Huang et al., Adv. Funct. Mater. 27, 1606834 (2017)

    Article  Google Scholar 

  38. H. Qiao, Z. Huang, X. Ren et al., J. Mater. Sci. 53, 4371–4377 (2018)

    Article  CAS  Google Scholar 

  39. T.J. Whittles, L.A. Burton, J.M. Skelton, A. Walsh, T.D. Veal, VR Dhanak, Chem. Mater. 28, 3718–3726 (2016)

    Article  CAS  Google Scholar 

  40. Q. Xiang, J. Yu, M. Jaroniec, J. Am. Chem. Soc. 134, 6575–6578 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Science and Technology Program of Xiangtan (no. CXY-ZD20172002) as well as the Program for Changjiang Scholars and Innovative Research Team in University (IRT_17R91).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang Qi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Y., Chen, X., Ren, X. et al. Facile hydrothermally synthesis of hexagon tin disulfide nanosheets for high-performance photocatalytic hydrogen generation. J Mater Sci: Mater Electron 29, 19614–19619 (2018). https://doi.org/10.1007/s10854-018-0164-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-0164-0

Navigation