Skip to main content
Log in

Valence-band offsets of InGaZnO4, LaAlO3, and SrTiO3 heterostructures explained by interface-induced gap states

  • Review
  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The intrinsic interface-induced gap states (IFIGS) which derive from the virtual gap states of the complex band structure are the fundamental mechanism that determines the band-structure lineup at semiconductor interfaces. The valence-band offsets of heterostructures are composed of a zero-charge-transfer term and an electrostatic-dipole contribution which are given by the difference of the p-type branch-point energies of the IFIGS and of the electronegativities, respectively, of the two semiconductors involved. The valence-band offsets of InGaZnO4, LaAlO3, and SrTiO3 heterostructures are quantitatively and consistently explained by the IFIGS-and-electronegativity concept. The analysis of the experimental InGaZnO4, LaAlO3, and SrTiO3 data yields the p-type branch-point energies as 2.37 ± 0.18 eV, 2.59 ± 0.13 eV, and 2.86 ± 0.14 eV, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. T. Kamiya, K. Nomura, H. Hosono, Sci. Technol. Adv. Mater. 11, 044305 (2010)

    Article  Google Scholar 

  2. L. Petti, N. Münzenrieder, C. Vogt, H. Faber, L. Beuthe, G. Cantarella, F. Bottacchi, T.D. Anthopoulos, G. Tröster, Appl. Phys. Rev. 3, 021303 (2016)

    Article  Google Scholar 

  3. E.A. Douglas, A. Scheurmann, R.P. Davies, B.P. Gila, H. Cho, V. Craciun, E.S. Lambers, S.J. Pearton, F. Ren, Appl. Phys. Lett. 98, 242110 (2011)

    Article  Google Scholar 

  4. H. Cho, K.-W. Kim, E.A. Douglas, B.P. Gila, V. Craciun, E.S. Lambers, D.P. Norton, F. Ren, S.J. Pearton, ECS Trans. 50, 367 (2013)

    Article  Google Scholar 

  5. J.K. Kim, B.P. Gila, S.J. Pearton, F. Ren, J. Nanosci. Nanotechnol. 14, 3925 (2014)

    Article  CAS  Google Scholar 

  6. J.C. Park, K.-W. Kim, B.P. Gila, E.S. Lamber, D.P. Norton, S.J. Pearton, F. Ren, J.K. Kim, H. Cho, J. Nanosci. Nanotechnol. 14, 8445 (2014)

    Article  CAS  Google Scholar 

  7. D.C. Hays, B.P. Gila, E.S. Lambers, S.J. Pearton, F. Ren, Vacuum 116, 60 (2015)

    Article  CAS  Google Scholar 

  8. D.C. Hays, B.P. Gila, S.J. Pearton, F. Ren, ECS J. Solid State Sci. Technol. 5, 680 (2016)

    Article  Google Scholar 

  9. K. Lee, K. Nomura, H. Yanagi, T. Kamiya, E. Ikenaga, T. Sugiyama, K. Kobayashi, H. Hosono, J. Appl. Phys. 112, 033713 (2012)

    Article  Google Scholar 

  10. Z.-Y. Xie, H.-L. Lu, S.-S. Xu, Y. Geng, Q.-Q. Sun, S.-J. Ding, D.W. Zhang, Appl. Phys. Lett. 101, 252111 (2012)

    Article  Google Scholar 

  11. J. Yao, S. Zhang, L. Gong, Appl. Phys. Lett. 101, 093508 (2012)

    Article  Google Scholar 

  12. X.F. Chen, G. He, J.G. Lv, M. Liu, P.H. Wang, X.S. Chen, Z.Q. Sun, J. Alloys Comput. 647, 1035 (2015)

    Article  CAS  Google Scholar 

  13. C. Hays, B.P. Gila, S.J. Pearton, B.-J. Kim, F. Ren, Vacuum 125, 113 (2016)

    Article  CAS  Google Scholar 

  14. D.C. Hays, B.P. Gila, S.J. Pearton, R. Thorpe, F. Ren, Vacuum 136, 137 (2017)

    Article  CAS  Google Scholar 

  15. D.C. Hays, B.P. Gila, S.J. Pearton, F. Ren, Appl. Phys. Rev. 4, 021301 (2017)

    Article  Google Scholar 

  16. A. Ohtomo, H.J. Hwang, Nature 427, 423 (2004)

    Article  CAS  Google Scholar 

  17. Y. Segal, J.H. Ngai, J.W. Reiner, F.J. Walker, C.H. Ahn, Phys. Rev. B 80, 241107 (2009)

    Article  Google Scholar 

  18. L. Qiao, T.C. Droubay, T.C. Kaspar, P.V. Sushko, S.A. Chambers, Surf. Sci. 605, 1381 (2011)

    Article  CAS  Google Scholar 

  19. U. Treske, N. Heming, M. Knupfer, B. Büchner, E. Di Gennaro, A. Khare, U.S. Di Uccio, F.M. Granozio, S. Krause, A. Koitzsch, Sci. Rep. 5, 14506 (2015)

    Article  CAS  Google Scholar 

  20. T. Susaki, S. Ueda, K. Matsuzaki, T. Kobayashi, Y. Toda, H. Hosono, Phys. Rev. B 94, 075311 (2016)

    Article  Google Scholar 

  21. R.G. Southwick III, W.B. Knowlton, IEEE Trans. Device Mater. Release 6, 136 (2006)

    Article  CAS  Google Scholar 

  22. R.G. Southwick III, A. Sup, A. Jain, W.B. Knowlton, IEEE Trans. Device Mater. Release 11, 236 (2011)

    Article  Google Scholar 

  23. R.L. Anderson, Solid-State Electron. 5, 341 (1962)

    Article  CAS  Google Scholar 

  24. N.F. Mott, Proc. Cambridge Philos. Soc. 34, 568 (1938)

    Article  CAS  Google Scholar 

  25. W. Schottky, Physik. Zeitschr. 41, 570 (1940)

    Google Scholar 

  26. J. Bardeen, Phys. Rev. 71, 717 (1947)

    Article  Google Scholar 

  27. C.A. Mead, Solid-State Electron. 9, 1023 (1966)

    Article  CAS  Google Scholar 

  28. H. Kroemer, Crit. Rev. Solid State Mater. Sci. 5, 555 (1975)

    Article  CAS  Google Scholar 

  29. V. Heine, Phys. Rev. 138, A1689 (1965)

    Article  Google Scholar 

  30. C. Tejedor, F. Flores, J. Phys. C 11, L19 (1978)

    Article  CAS  Google Scholar 

  31. W. Mönch, Electronic Properties Of Semiconductor Interfaces (Springer, Berlin, 2004)

    Book  Google Scholar 

  32. L.N. Pauling, The Nature of the Chemical Bond (Cornell University Press, Ithaca, 1939)

    Google Scholar 

  33. A.R. Miedema, P.F. de Châtel, F.R. de Boer, Physica 100B, 1 (1980)

    Article  CAS  Google Scholar 

  34. W. Mönch, in Festkörperprobleme: A Advances In Solid State Physics, ed. by P. Grosse On the Present Understanding of Schottky Contacts, vol 26 (Vieweg, Braunschweig, 1986), p. 67

    Google Scholar 

  35. W. Mönch, Phys. Rev. Lett. 58, 1260 (1987)

    Article  Google Scholar 

  36. W. Mönch, Appl. Surf. Sci. 92, 367 (1996)

    Article  Google Scholar 

  37. W. Mönch, Appl. Phys. Lett. 91, 042117 (2007)

    Article  Google Scholar 

  38. W. Mönch, Appl. Phys. Lett. 93, 172118 (2008)

    Article  Google Scholar 

  39. W. Mönch, J. Appl. Phys. 107, 013706 (2010)

    Article  Google Scholar 

  40. W. Mönch, J. Appl. Phys. 109, 113724 (2011)

    Article  Google Scholar 

  41. W. Mönch, J. Mater. Sci. 27, 1444 (2016)

    Google Scholar 

  42. W. Mönch, in Electronic Properties of Semiconductor Interfaces, ed. by S. Kasap, P. Capper. Handbook of Electronic and Photonic Materials, vol 2 (Springer, Berlin, 2017), p. 175

    Google Scholar 

  43. E.A. Kraut, R.W. Grant, J.R. Waldrop, S.P. Kowalczyk, Phys. Rev. Lett. 44, 1620 (1980)

    Article  CAS  Google Scholar 

  44. T. Kamiya, K. Nomura, H. Hosono, Phys. Status Solidi A 206, 860 (2009)

    Article  CAS  Google Scholar 

  45. W. Mönch, J. Appl. Phys. 111, 073706 (2012)

    Article  Google Scholar 

  46. A. Dimoulas, P. Tsipas, A. Sotiropoulos, E.K. Evangelou, Appl. Phys. Lett. 89, 252110 (2006)

    Article  Google Scholar 

  47. W. Mönch, J. Vac. Sci. Technol. B 17, 1867 (1999)

    Article  Google Scholar 

  48. V.V. Afanasev, A. Stesmans, R. Droopad, M. Passlack, L.F. Edge, D.G. Schlom, Appl. Phys. Lett. 89, 092103 (2006)

    Article  Google Scholar 

  49. Y.Y. Mi, S.J. Wang, J.W. Chai, J.S. Pan, A.C.H. Huan, M. Ning, C.K. Ong, Appl. Phys. Lett. 89, 202107 (2006)

    Article  Google Scholar 

  50. R. Yasuharaet, M. Komatsu, H. Takahashi, S. Toyoda, J. Okabayashi, H. Kumigashira, M. Oshima, D. Kukuruznyak, T. Chikyow, Appl. Phys. Lett. 89, 122904 (2006)

    Article  Google Scholar 

  51. Z.Q. Liu, W.K. Chim, S.Y. Chiam, J.S. Pan, C.M. Ng, J. Appl. Phys. 109, 093701 (2011)

    Article  Google Scholar 

  52. D. Cao, X. Cheng, T. Jia, D. Xu, L. Zheng, Z. Wang, C. Xia, Y. Yu, Adv. Mater. Res. 721, 24 (2013)

    Article  Google Scholar 

  53. J.W. Liu, M.Y. Liao, M. Imura, H. Oosato, E. Watanabe, A. Tanaka, H. Iwai, Y. Koide, J. Appl. Phys. 114, 084108 (2013)

    Article  Google Scholar 

  54. P.H. Carey, I.V.F. Ren, D.C. Hays, B.P. Gila, S.J. Pearton, S. Jang, A. Kuramata, J. Vac. Sci. Technol. B 35, 041201 (2017)

    Article  Google Scholar 

  55. E. Chernova, C. Brooks, D. Chvostova, Z. Bryknar, A. Dejneka, M. Tyunia, Optical Mater. Express 7, 3844 (2017)

    Article  CAS  Google Scholar 

  56. P.K. Gogoi, D. Schmidt, Phys. Rev. B 93, 075204 (2016)

    Article  Google Scholar 

  57. S.A. Chambers, Y. Liang, Z. Yu, R. Droopad, J. Ramdani, J. Vac. Sci. Technol. A 19, 934 (2001)

    Article  CAS  Google Scholar 

  58. A.C. Tuan, T.C. Kaspar, T. Droubay, J.W. Rogers Jr., S.A. Chambers, Appl. Phys. Lett. 83, 3734 (2003)

    Article  CAS  Google Scholar 

  59. F. Amy, A.S. Wan, A. Kahn, F.J. Walker, R.A. McKee, J. Appl. Phys. 96, 1635 (2004)

    Article  CAS  Google Scholar 

  60. S.A. Chambers, T. Droubay, T.C. Kaspar, M. Gutowski, J. Vac. Sci. Technol. B 22, 2205 (2004)

    Article  CAS  Google Scholar 

  61. Y. Liang, J. Curless, D. McCready, Appl. Phys. Lett. 86, 082905 (2005)

    Article  Google Scholar 

  62. C.H. Jia, Y.H. Chen, X.L. Zhou, A.L. Yang, G.L. Zheng, X.L. Liu, S.Y. Yang, Z.G. Wang, J. Phys. D 42, 095305 (2009)

    Article  Google Scholar 

  63. S.A. Chambers, T. Ohsawa, C.M. Wang, I. Lyubinetsky, J.E. Jaffe, Surf. Sci. 603, 771 (2009)

    Article  CAS  Google Scholar 

  64. Z. Li, B. Zhang, J. Wang, J. Liu, X. Liu, S. Yang, Q. Zhu, Z. Wang, Nanoscale Res. Lett. 6, 193 (2011)

    Article  Google Scholar 

  65. Z. Yang, W. Huang, J. Hao, Appl. Phys. Lett. 103, 031919 (2013)

    Article  Google Scholar 

  66. P. Schütz, F. Pfaff, P. Scheiderer, Y.Z. Chen, N. Pryds, M. Gorgoi, M. Sing, R. Claessen, Phys. Rev. B 91, 165118 (2015)

    Article  Google Scholar 

  67. K.J. Kormondy, A.B. Posadas, T.Q. Ngo, S. Lu, N. Goble, J. Jordan-Sweet, X.P.A. Gao, D.J. Smith, M.R. McCartney, J.G. Ekerdt, A.A. Demkov, J. Appl. Phys. 117, 095303 (2015)

    Article  Google Scholar 

  68. S.A. Chambers, Y. Du, R.B. Comes, S.R. Spurgeon, P.V. Sushko, Appl. Phys. Lett. 110, 082104 (2017)

    Article  Google Scholar 

  69. W. Walukiewicz, Phys. B 302–303, 123 (2001)

    Article  Google Scholar 

  70. R.E. Thomas, J.W. Gibson, G.A. Haas, Appl. Surf. Sci. 5, 398 (1980)

    Article  CAS  Google Scholar 

  71. C.I. Wu, A. Kahn, Appl. Surf. Sci. 162–163, 250 (2000)

    Article  Google Scholar 

  72. W. Mönch, Semiconductor Surfaces and Interfaces, 3rd edn. (Springer, Berlin, 2001)

    Book  Google Scholar 

  73. R. Schafranek, A. Klein, Solid State Ionics 177, 1659 (2006)

    Article  CAS  Google Scholar 

  74. G. Xiong, R. Shao, T.C. Droubay, A.G. Joly, K.M. Beck, S.A. Chambers, W.P. Hess, Adv. Funct. Mater. 17, 2133 (2007)

    Article  CAS  Google Scholar 

  75. E. Bersch, S. Rangan, R.A. Bartynski, Phys. Rev. B 78, 085114 (2008)

    Article  Google Scholar 

  76. M. Mohamed, K. Irmscher, C. Janowitz, Z. Galazka, R. Manzke, R. Fornari, Appl. Phys. Lett. 101, 132106 (2012)

    Article  Google Scholar 

  77. Z.Q. Liu, W.K. Chim, S.Y. Chiam, J.S. Pan, C.M. Ng, J. Mater. Chem. 22, 17887 (2012)

    Article  CAS  Google Scholar 

  78. M. Kumar, B. Roul, T.N. Bhat, M.K. Rajpalke, A.T. Kalghatgi, S.B. Krupanidhi, Thin Solid Films 520, 4911 (2012)

    Article  CAS  Google Scholar 

  79. M. Nazarzadehmoafi, S. Machulik, F. Neske, V. Scherer, C. Janowitz, Z. Galazka, M. Mulazzi, R. Manzke, Appl. Phys. Lett. 105, 162104 (2014)

    Article  Google Scholar 

  80. W. Mönch, Europhys. Lett. 27, 479 (1994)

    Article  Google Scholar 

  81. J. Tersoff, Phys. Rev. Lett. 52, 465 (1984)

    Article  CAS  Google Scholar 

  82. J. Tersoff, Phys. Rev. B 30, 4874 (1984)

    Article  CAS  Google Scholar 

  83. W. Mönch, J. Appl. Phys. 80, 5076 (1996)

    Article  Google Scholar 

  84. W. Mönch, in Wide-Gap Chalcopyrites, ed. by S. Siebentritt, U. Rau. Band Structure Lineup at I–III–VI2 Schottky Contacts and Heterostructures (Springer, Berlin, 2006), p. 9

    Chapter  Google Scholar 

  85. V.N. Brudnyi, S.N. Grinyaev, V.E. Stepanov, Phys. B 212, 429 (1995)

    Article  CAS  Google Scholar 

  86. V.N. Brudnyi, S.Yu Sarkisov, A.V. Kosobutsky, Semicond. Sci. Technol. 30, 115019 (2015)

    Article  Google Scholar 

  87. J. Robertson, J. Vac. Sci. Technol. B 18, 1785 (2000)

    Article  CAS  Google Scholar 

  88. P.W. Peacock, J. Robertson, J. Appl. Phys. 92, 4712 (2002)

    Article  CAS  Google Scholar 

  89. J. Robertson, B. Falabretti, J. Appl. Phys. 100, 014111 (2006)

    Article  Google Scholar 

  90. A. Schleife, F. Fuchs, C. Rödl, J. Furthmüller, F. Bechstedt, Appl. Phys. Lett. 94, 012104 (2009)

    Article  Google Scholar 

  91. B. Höffling, A. Schleife, C. Rödl, F. Bechstedt, Phys. Rev. B 85, 035305 (2012)

    Article  Google Scholar 

  92. A. Belabbes, C. Panse, J. Furthmüller, F. Bechstedt, Phys. Rev. B 86, 075208 (2012)

    Article  Google Scholar 

  93. Y. Hinuma, A. Grüneis, G. Kresse, F. Oba, Phys. Rev. B 90, 155405 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Winfried Mönch.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mönch, W. Valence-band offsets of InGaZnO4, LaAlO3, and SrTiO3 heterostructures explained by interface-induced gap states. J Mater Sci: Mater Electron 29, 19607–19613 (2018). https://doi.org/10.1007/s10854-018-0161-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-0161-3

Navigation