Skip to main content
Log in

Influence of A-site magnesium doping on structural and electrical properties of BaZr0.1Ti0.9O3 ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The effects of the replacement of Ba2+ by off-center Mg2+ ions on the structural and electrical properties of BaZr0.1Ti0.9O3 ceramics were investigated. We show that the use of magnesium as A-site dopant favors the formation of the perovskite phase at a lower temperature and improves the densification of the ceramics. Combining XRD, SEM and electrical measurements, we determined that the solubility limit of Mg is ~ 2%. We show that Mg doping leads to a decrease in both the Curie temperature and remnant polarization of the ceramics. A 1% Mg content, however, enhances the room-temperature d33 piezoelectric coefficient due to the composition proximity to an impurity induced morphotropic phase boundary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. U. Höchli, K. Knorr, A. Loidl, Orientational glasses. Adv. Phys. 39, 405 (1990)

    Article  Google Scholar 

  2. B. Vugmeister, M. Glinchuk, Dipole glass and ferroelectricity in random-site electric dipole systems. Rev. Mod. Phys. 62, 993 (1990)

    Article  CAS  Google Scholar 

  3. R. Machado, M. Sepliarsky, M.G. Stachiotti, Off-center impurities in a robust ferroelectric material: case of Li in KNbO3. Phys. Rev. B 86, 094118 (2012)

    Article  Google Scholar 

  4. S. Takeda, S. Yasuda, C. Moriyoshi, Y. Kuroiwa, A. Honda, N. Inoue, S. Higai, A. Ando, Off-centering of rare-earth ion in (Ba,R)(Ti,Mg)O3 (R = Gd, Dy). Jpn. J. Appl. Phys. 55, 10TC08 (2016)

    Article  Google Scholar 

  5. Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, M. Nahamura, Lead-free piezoceramics. Nature 432, 84–87 (2004)

    Article  CAS  Google Scholar 

  6. Y. Guo, K. Kakimoto, H. Ohsato, Phase transitional behavior and piezoelectric properties of (Na0.5K0.5)NbO3–LiNbO3 ceramics. Appl. Phys. Lett. 85, 4121 (2004)

    Article  CAS  Google Scholar 

  7. R. Machado, M. Sepliarsky, M.G. Stachiotti, Microscopic scale investigation of piezoelectric properties of lead-free alkaline niobates. Appl. Phys. Lett. 103, 242901 (2013)

    Article  Google Scholar 

  8. R. Machado, A. Di Loreto, A. Frattini, M. Sepliarsky, O. de Sanctis, M.G. Stachiotti, Phase transition, dielectric and piezoelectric properties of LixK1-xNbO3. J. Alloys Compd. 621, 256 (2015)

    Article  CAS  Google Scholar 

  9. Z. Yu, C. Ang, R. Guo, A. Bhalla, Piezoelectric and strain properties of Ba(Ti1-xZrx)O3 ceramics. J. Appl. Phys. 92, 1489 (2002)

    Article  CAS  Google Scholar 

  10. T. Maiti, R. Guo, A. Bhalla, Structure-property phase diagram of BaZrxTi1-xO3 system. J. Am. Ceram. Soc. 91(6), 1769–1780 (2008)

    Article  CAS  Google Scholar 

  11. T. Maiti, R. Guo, A. Bhalla, Evaluation of experimental resume of BaZrxTi1-xO3 with perspective to ferroelectric relaxor family: an overview. Ferroelectrics 425, 4–26 (2011)

    Article  CAS  Google Scholar 

  12. E. Taghaddos, M. Hejazi, A. Safari, Lead-free piezoelectric materials and ultrasound transducers for medical imaging. J. Adv. Dielectr. 5, 153002 (2015)

    Article  Google Scholar 

  13. J. Rödel, K. Webber, R. Dittmer, W. Jo, M. Kimura, D. Damjanovic, Transferring lead-free piezoelectric ceramics into application. J. Eur. Ceram. Soc. 35, 1659–1681 (2015)

    Article  Google Scholar 

  14. W. Liu, X. Ren, Large piezoelectric effect in Pb-free ceramics. Phys. Rev. Lett. 103, 257602 (2009)

    Article  Google Scholar 

  15. D.S. Keeble, F. Benabdallah, P. Thomas, M. Maglione, J. Kreisel, Revised structural phase diagram of (Ba0.7Ca0.3TiO3)-(BaZr0.2Ti0.8O3). Appl. Phys. Lett. 102, 092903 (2013)

    Article  Google Scholar 

  16. W. Li, Z. Xu, R. Chu, P. Fu, G. Zang, Large piezoelectric coefficient in (Ba1-xCax)(Ti0.96Sn0.04)O3 lead-free ceramics. J. Am. Ceram. Soc. 94, 4131 (2011)

    Article  CAS  Google Scholar 

  17. D. Xue, Y. Zhou, H. Bao, J. Gao, C. Zhou, X. Ren, Large piezoelectric effect in Pb-free Ba(Ti,Sn)O3-x(Ba,Ca)TiO3 ceramics. Appl. Phys. Lett. 99, 122901 (2011)

    Article  Google Scholar 

  18. D. Wang, Z. Jiang, B. Yang, S. Zhang, M. Zhang, F. Guo, W. Cao, D. Johnson, Phase diagram and enhanced piezoelectric response of lead-free BaTiO3–CaTiO3–BaHfO3 system. J. Am. Ceram. Soc. 97, 3244 (2014)

    Article  CAS  Google Scholar 

  19. X. Liu, Z. Chen, B. Fang, J. Ding, X. Zhao, H. Xu, H. Luo, Enhancing piezoelectric properties of BCZT ceramics by Sr and Sn co-doping. J. Alloys Compd. 640, 128–133 (2015)

    Article  CAS  Google Scholar 

  20. M. Acosta, N. Novak, V. Rojas, S. Patel, R. Vaish, J. Koruza, G. Rossetti Jr., J. Roedel, BaTiO3-based piezoelectrics: fundamentals, current status, and perspectives. App. Phys. Rev. 4, 041305 (2017)

    Article  Google Scholar 

  21. P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, J. Luitz, WIEN2K, an Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties (Techn. Universität Wien, Wien) (2001)

    Google Scholar 

  22. Z. Wu, R. Cohen, More accurate generalized gradient approximation for solids. Phys. Rev. B 73, 235116 (2006)

    Article  Google Scholar 

  23. K. Felgner, T. Müller, H. Langhammer, H. Abicht, Investigations on the liquid phase in barium titanate ceramics with silica additives. J. Eur. Ceram. Soc. 21, 1657–1660 (2001)

    Article  CAS  Google Scholar 

  24. V. Paunović, V. Mitić, V. Pavlović, M. Miljković, L. Živković, Microstructure evolution and phase transition in La/Mn doped barium titanate ceramics. Process. Appl. Ceram. 4(4), 253–258 (2010)

    Article  Google Scholar 

  25. R. Basu, H. Maiti, Recrystallization phenomenon in semiconducting barium titanate. Trans. Indian Ceram. Soc. 47(6), 176–179 (1988)

    Article  CAS  Google Scholar 

  26. X. Xu, G. Hilmas, Effects of Ba6Ti17O40 on the dielectric properties of Nb-doped BaTiO3 ceramics. J. Am. Ceram. Soc. 89, 2496–2501 (2006)

    Article  CAS  Google Scholar 

  27. T. Martins Amaral, E. Antonelli, D. Ochoa, J. Garcıa, A. Hernandes, Microstructural features and functional properties of bilayered BaTiO3/BaTi1-xZrxO3 ceramics. J. Am. Ceram. Soc. 98, 1169–1174 (2015)

    Article  Google Scholar 

  28. X. Chou, J. Zhai, X. Yao, Relaxor behavior and dielectric properties of MgTiO3-doped BaZr0.35Ti0.65O3 composite ceramics for tunable applications. J. Am. Ceram. Soc. 90, 2799–2801 (2007)

    Article  CAS  Google Scholar 

  29. S.K. Rout, E. Sinha, S. Panigrahi, Dielectric properties and diffuse phase transition in Ba1-x MgxTi0.6 Zr0.4O3 solid solutions. Mater. Chem. Phys. 101, 428–432 (2007)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Pablo Diaz for the SEM measurements and Oscar de Sanctis for useful discussions. This work was sponsored by Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET) and Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT) de la República Argentina. MGS thanks support from Consejo de Investigaciones de la Universidad Nacional de Rosario (CIUNR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. G. Stachiotti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di Loreto, A., Frattini, A., Machado, R. et al. Influence of A-site magnesium doping on structural and electrical properties of BaZr0.1Ti0.9O3 ceramics. J Mater Sci: Mater Electron 29, 19783–19790 (2018). https://doi.org/10.1007/s10854-018-0104-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-0104-z

Navigation