Skip to main content
Log in

Microwave absorption properties of SiO2 doped furan resin derived carbon particles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Aiming to tailor microwave absorption properties of furan resin derived carbon (FRC) which is expected using as matrix in carbon/carbon composites (C/C) for microwave absorption, SiO2 doped furan resin derived carbon (SFRC) particles were prepared and their dielectric behavior and microwave absorption capability were investigated. Results indicated that compared with pure FRC particles, complex permittivity of SFRC particles decreases significantly, which is mainly ascribed to the greatly decreased electrical conductivity. Due to improved microwave impedance and relative high dielectric loss, FRC particles doped by 20 wt% SiO2 show enhanced microwave absorption performance. However, when SiO2 is increased to 40 wt%, the microwave absorption property is weakened because of low attenuation capability. SFRC could potentially be used as a suitable carbon matrix to prepare C/C with favorable microwave absorption capability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Z. Chen, C. Xu, C. Ma, W. Ren, H. Cheng, Adv. Mater. (2013). https://doi.org/10.1002/adma.201204196

    Google Scholar 

  2. A.K. Singh, A. Shishkin, T. Koppel, N. Gupta, Compos. B (2018). https://doi.org/10.1016/j.compositesb.2018.05.027

    Google Scholar 

  3. S.E. Zakiyan, H. Azizi, I. Ghasemi, Compos. Sci. Technol. (2018). https://doi.org/10.1016/j.compscitech.2018.02.002

    Google Scholar 

  4. H. Wu, S. Qu, K. Lin, Powder Technol. (2018). https://doi.org/10.1016/j.powtec.2018.04.015

    Google Scholar 

  5. A. Kolanowska, D. Janas, A.P. Herman, R.G. Jędrysiak, T. Giżewski, S. Boncel, Carbon (2018). https://doi.org/10.1016/j.carbon.2017.09.078

    Google Scholar 

  6. M. Letellier, J. Macutkevic, P. Kuzhir, J. Banys, V. Fierro, A. Celzard, Carbon (2017). https://doi.org/10.1016/j.carbon.2017.06.080

    Google Scholar 

  7. H. Wu, G. Wu, Y. Ren, L. Yang, L. Wang, X. Li, J. Mater. Chem. C (2015). https://doi.org/10.1039/C5TC01716E

    Google Scholar 

  8. D. Lan, M. Qin, R. Yang, J. Colloid Interface Sci. (2019). https://doi.org/10.1016/j.jcis.2018.08.108

    Google Scholar 

  9. C. Mao-Sheng, Y. Jian, S. Wei-Li, Acs Appl. Mater. Interfaces (2012). https://doi.org/10.1021/am3021069

    Google Scholar 

  10. W.-L. Song, M.-S. Cao, M.-M. Lu, J. Liu, J. Yuan, L.-Z. Fan, J. Mater. Chem. C (2013). https://doi.org/10.1039/C2TC00494A

    Google Scholar 

  11. W.L. Song, X.T. Guan, L.Z. Fan, Carbon (2016). https://doi.org/10.1016/j.carbon.2016.01.002

    Google Scholar 

  12. H. Wu, G. Wu, L. Wang, Powder Technol. (2015). https://doi.org/10.1016/j.powtec.2014.09.045

    Google Scholar 

  13. B. Wen, M. Cao, M. Lu, Adv. Mater. (2014). https://doi.org/10.1002/adma.201400108

    Google Scholar 

  14. X.-F. Lu, P. Xiao, Carbon (2013). https://doi.org/10.1016/j.carbon.2013.03.007

    Google Scholar 

  15. X. Luo, D.D.L. Chung, Compos. B (1999). https://doi.org/10.1016/S1359-8368(98)00065-1

    Google Scholar 

  16. G. Wu, Y. Cheng, Y. Ren, Y. Wang, Z. Wang, H. Wu, J. Alloy. Compd. (2015). https://doi.org/10.1016/j.jallcom.2015.08.236

    Google Scholar 

  17. Y. Wang, W. Wang, J. Sun, C. Sun, Y. Feng, Z. Li, Carbon (2018). https://doi.org/10.1016/j.carbon.2018.04.026

    Google Scholar 

  18. X. Wang, X. Bao, X. Zhou, G. Shi, J. Alloy. Compd. (2018). https://doi.org/10.1016/j.jallcom.2018.06.150

    Google Scholar 

  19. Y. Wei, J. Yue, X.-Z. Tang, Z. Du, X. Huang, Appl. Surf. Sci. (2018). https://doi.org/10.1016/j.apsusc.2017.09.079

    Google Scholar 

  20. W. Zhou, L. Long, P. Xiao, Ceram. Int. (2017). https://doi.org/10.1016/j.ceramint.2017.01.095

    Google Scholar 

  21. M. Gholampoor, F. Movassagh-Alanagh, H. Salimkhani, Solid State Sci. (2017). https://doi.org/10.1016/j.solidstatesciences.2016.12.005

    Google Scholar 

  22. H. Salimkhani, A. Motei Dizaji, E. Hashemi, P. Palmeh, G. Sabeghi, S. Salimkhani, Ceram. Int. (2016). https://doi.org/10.1016/j.ceramint.2016.04.185

    Google Scholar 

  23. E. Savage, Carbon (1993). https://doi.org/10.1007/978-94-011-1586-5

    Google Scholar 

  24. W. Zhou, P. Xiao, Y. Li, Appl. Surf. Sci. (2012). https://doi.org/10.1016/j.apsusc.2012.03.107

    Google Scholar 

  25. H.L. Ding, Y.X. Zhang, S. Wang, J.M. Xu, S.C. Xu, G.H. Li, Chem. Mater. (2012). https://doi.org/10.1021/cm302828d

    Google Scholar 

  26. Y. Wang, Y. Lai, S. Wang, W. Jiang, Ceram. Int. (2017). https://doi.org/10.1016/j.ceramint.2016.10.148

    Google Scholar 

  27. B. Wen, M.-S. Cao, Z.-L. Hou, Carbon (2013). https://doi.org/10.1016/j.carbon.2013.07.110

    Google Scholar 

  28. C. Ge, L. Wang, G. Liu, T. Wang, J. Alloy. Compd. (2018). https://doi.org/10.1016/j.jallcom.2018.07.081

    Google Scholar 

  29. Y. Liu, Y. Li, F. Luo, J. Alloy. Compd. (2017). https://doi.org/10.1016/j.jallcom.2017.04.301

    Google Scholar 

  30. M.-S. Cao, X.-L. Shi, X.-Y. Fang, Appl. Phys. Lett. (2007). https://doi.org/10.1063/1.2803764

    Google Scholar 

  31. X. Yuan, L. Cheng, L. Zhang, J. Alloys Compd. (2016). https://doi.org/10.1016/j.jallcom.2016.03.309

    Google Scholar 

  32. X. Yuan, L. Cheng, S. Guo, L. Zhang, Ceram. Int. (2017). https://doi.org/10.1016/j.ceramint.2016.09.151

    Google Scholar 

  33. X. Ji, W. Zhang, W. Jia, J. Ind. Eng. Chem. (2017). https://doi.org/10.1016/j.jiec.2017.07.013

    Google Scholar 

  34. W. Song, M. Cao, Z. Hou, X. Fang, X. Shi, J. Yuan, Appl. Phys. Lett. (2009). https://doi.org/10.1063/1.3152764

    Google Scholar 

  35. M.-S. Cao, W.-L. Song, Z.-L. Hou, B. Wen, J. Yuan, Carbon (2010). https://doi.org/10.1016/j.carbon.2009.10.028

    Google Scholar 

  36. J.E. Atwater, J.R.R. Wheeler, Appl. Phys. A (2004). https://doi.org/10.1007/s00339-003-2329-8

    Google Scholar 

  37. W. Zhou, P. Xiao, Y. Li, L. Zhou, Ceram. Int. (2013). https://doi.org/10.1016/j.ceramint.2013.01.090

    Google Scholar 

  38. R.C. Che, L.M. Peng, X.F. Duan, Q. Chen, X.L. Liang, Adv. Mater. (2004). https://doi.org/10.1002/adma.200306460

    Google Scholar 

  39. Z.W. Li, G.Q. Lin, Y.P. Wu, L.B. Kong, IEEE Trans. Magn. (2009). https://doi.org/10.1109/TMAG.2008.2007757

    Google Scholar 

  40. F. Qin, C. Brosseau, J. Appl. Phys. (2012). https://doi.org/10.1063/1.3688435

    Google Scholar 

  41. M. Cao, X. Wang, W. Cao, X. Fang, B. Wen, J. Yuan, Small (2018). https://doi.org/10.1002/smll.201800987

    Google Scholar 

  42. W. Cao, X. Wang, J. Yuan, W. Wang, M. Cao, J. Mater. Chem. C (2015). https://doi.org/10.1039/C5TC02185E

    Google Scholar 

  43. T. Inui, K. Konishi, K. Oda, IEEE Trans. Magn. (1999). https://doi.org/10.1109/20.801110

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51604107).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Zhou or Yang Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Long, L., Zhou, W., Xiao, P. et al. Microwave absorption properties of SiO2 doped furan resin derived carbon particles. J Mater Sci: Mater Electron 30, 3359–3364 (2019). https://doi.org/10.1007/s10854-018-00609-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-00609-x

Navigation