Skip to main content
Log in

Synthesis and characterization of photoactive material Cu2NiSnS4 thin films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, we fabricated photoactive material copper–nickel–tin–sulphide Cu2NiSnS4 (CNTS) thin films on indium-doped tin oxide (ITO) coated glass substrates via an easy electrodeposition technique. The CNTS films have been characterized by different methods such as X-ray diffraction (XRD), Raman spectroscopy, atomic force microscopy (AFM), UV–vis spectrophotometer, electrochemical impedance spectroscopy (EIS) and Hall effect measurements. Both XRD patterns and Raman spectra confirmed the formation of a polycrystalline CNTS single phase without any secondary phases. AFM studies of the CNTS samples showed that morphology depends on the electrodeposition time. It was also found that the optical band gap redshifts from 1.74 to 1.52 eV as the film thickness rises from 450 to 1560 nm. The Nyquist plots obtained from EIS of the planar junction CNTS/electrolyte showed the existence of one semicircle, which was modeled by an equivalent electrical circuit thanks to the Randles model. The best photocathode for PEC water splitting was obtained for the sample with the optimized thickness of 1250 nm. From Hall effect measurement, it is inferred that the CNTS thin films of thickness 1250 nm have a positive Hall coefficient (RH), carrier’s density ~ 2.9 × 1016 cm−3, Hall mobility ~ 120 cm2 V−1 s−1 and electrical resistivity ~ 0.54 Ω cm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A. Fujishima, K. Honda, Nature 238, 37 (1972)

    Article  Google Scholar 

  2. X. Liu, F. Wang, Q. Wang, Phys. Chem. Chem. Phys 14, 7894 (2012)

    Article  Google Scholar 

  3. D. Valerini, S. Hernández, F.D. Benedetto, N. Russo, G. Saracco, A. Rizzo, Mater. Sci. Semicond. Process. 42, 150 (2016)

    Article  Google Scholar 

  4. X.P. Qi, G.W. She, X. Huang, T.P. Zhang, H.M. Wang, L.X. Mu, W.S. Shi, Nanoscale 6, 3182 (2014)

    Article  Google Scholar 

  5. Z.S. Li, W.J. Luo, M.L. Zhang, J.Y. Feng, Z.G. Zou, Energy Environ. Sci. 6, 347-370 (2013)

    Google Scholar 

  6. S. Hernández, G. Saracco, G. Barbero, A.L.A. Ionescu, J. Electroanal. Chem 799, 481 (2017)

    Article  Google Scholar 

  7. S.P. Berglund, F.F. Abdi, P. Bogdanoff, A. Chemseddine, D. Friedrich, R. Van De Krol, Chem. Mater 28, 4231 (2016)

    Article  Google Scholar 

  8. M. Vishwakarma, D. Varandani, S.M. Shivaprasad, B.R. Mehta, ‎Sol. Energy Mater. Sol. Cells 174, 577 (2018)

    Article  Google Scholar 

  9. B.A. MacLeod, K.X. Steirer, J.L. Young, U. Koldemir, A. Sellinger, J.A. Turner, T.G. Deutsch, D.C. Olson, ACS Appl. Mater. Interfaces 7, 11346 (2015)

    Article  Google Scholar 

  10. F. Oliva, S. Kretzschmar, D. Colombara, S. Tombolato, C.M.D. Ruiz, A.B. Redinger, E. Saucedo, C. Broussillou, T.G. De Monsabert, T. Unold, P.J. Dale, V.I. Roca, A.P. Rodríguez, ‎Sol. Energy Mater. Sol. Cells 158, 168 (2016)

    Article  Google Scholar 

  11. M. Suryawanshi, S.W. Shin, U. Ghorpade, D. Song, C.W. Hong, S.S. Han, J. Heo, S.H. Kang, J.H. Kim, J. Mater. Chem. 5, 4695 (2017)

    Article  Google Scholar 

  12. J. Kim, W. Yang, Y. Oh, J. Kim, J. Moon, J. Alloys Compd. 691, 457 (2017)

    Article  Google Scholar 

  13. K. Woo, Y. Kim, J. Moon, Energy Environ. Sci. 5, 5340 (2012)

    Article  Google Scholar 

  14. A. Chihi, B. Bessais, RSC Adv. 7, 29469 (2017)

    Article  Google Scholar 

  15. L. Liang, Y. Sun, F. Lei, S. Gao, Y. Xie, J. Mater. Chem. A 2, 10647 (2014)

    Article  Google Scholar 

  16. A. Ghosh, A. Biswas, R. Thangavel, G. Udayabhanu, RSC Adv. 6, 96025 (2016)

    Article  Google Scholar 

  17. K. Mokurala, S. Mallick, P. Bhargava, S. Siol, T.R. Kleina, M.F.A.M. van Hest, J. Alloys Compd. 725, 510 (2017)

    Article  Google Scholar 

  18. D. Bae, T. Pedersen, B. Seger, M. Malizia, A. Kuznetsov, O. Hansen, I. Chorkendorff, P.C.K. Vesborg, Energy Environ. Sci. 8, 650 (2015)

    Article  Google Scholar 

  19. C. Shi, G. Shi, Z. Chen, P. Yang, M. Yao, Mater. Lett. 73, 89 (2012)

    Article  Google Scholar 

  20. H.J. Chen, S.W. Fu, T.C. Tsai, C.F. Shih, Mater. Lett. 166, 215 (2016)

    Article  Google Scholar 

  21. C.L. Yang, Y.H. Chen, M. Lin, S.L. Wu, L. Li, W.C. Liu, X.S. Wu, F.M. Zhang, Mater. Lett. 166, 101 (2016)

    Article  Google Scholar 

  22. L. Shi, Y. Li, R. Zheng, ChemPlusChem 80, 1533 (2015)

    Article  Google Scholar 

  23. F. Ozel, J. Alloys Compd. 657, 157 (2016)

    Article  Google Scholar 

  24. A. Kamble, K. Mokurala, A. Gupta, S. Mallick, P. Bhargava, Mater. Lett. 137, 440 (2014)

    Article  Google Scholar 

  25. S. Rondiya, N. Wadnerkar, Y. Jadhav, S. Jadkar, S. Haram, M. Kabir, Chem. Mater. 29, 3133 (2017)

    Article  Google Scholar 

  26. Y. Yang, D. Xu, Q. Wu, P. Diao, Sci. Rep. 6, 35158 (2016)

    Article  Google Scholar 

  27. A. Chihi, B. Bessais, J. Electron. Mater. 46, 354 (2017)

    Article  Google Scholar 

  28. C.P. Liu, H.G. Yang, Mater. Chem. Phys. 86, 370 (2004)

    Article  Google Scholar 

  29. B. Pejova, B. Abay, J. Phys. Chem. C 115, 23241 (2011)

    Article  Google Scholar 

  30. R. Godbole, V.P. Godbole, P.S. Alegaonkar, S. Bhagwat, New J. Chem. 41, 11807 (2017)

    Article  Google Scholar 

  31. V.V. Ganbavle, S.V. Mohite, G.L. Agawane, J.H. Kim, K.Y. Rajpure, J. Colloid Interface Sci. 451, 245 (2015)

    Article  Google Scholar 

  32. S. Sarkar, B. Das, P.R. Midya, G.C. Das, K.K. Chattopadhyay, Mater. Lett. 152, 155 (2015)

    Article  Google Scholar 

  33. S. Podsiadlo, M. Bialoglowski, M. Fadaghi, W. Gebicki, C. Jastrzebski, E. Zero, D. Trzybinski, K. Wozniak Cryst. Res. Technol. 50, 690 (2015)

    Article  Google Scholar 

  34. T. Gürel, C. Sevik, T. Cagin, Phys. Rev. B 84, 205201 (2011)

    Article  Google Scholar 

  35. M. Kumar, A. Dubey, N. Adhikari, S. Venkatesan, Q. Qiao, Energy Environ. Sci. 8, 3134 (2015)

    Article  Google Scholar 

  36. P. Klapetek, D. Nečas, C. Anderson, http://gwyddion.net

  37. Y. Cao, C. Zhou, J. Magn. Magn. Mater 333, 1 (2013)

    Article  Google Scholar 

  38. D. Liu, M.K. Gangishetty, T.L. Kelly, J. Mater. Chem. A 2, 19873 (2014)

    Article  Google Scholar 

  39. J. Jiang, M. Wang, Q. Chen, S. Shen, M. Li, L. Guo, RSC Adv. 4, 10542 (2014)

    Article  Google Scholar 

  40. M.A. Mansoor, N.M. Huang, V. McKee, T.A.N. Peiris, K.G.U. Wijayantha, Z. Arifin, M. Misran, M. Mazhar, Sol. Energy Mater. Sol. Cells 137, 258 (2015)

    Article  Google Scholar 

  41. A.P. Amalathas, M.M. Alkaisi, J. Mater. Sci. Mater. Electron 27, 11064 (2016)

    Article  Google Scholar 

  42. T.S. Reddy, M.C. Santhosh Kumar, RSC Adv. 6, 95680 (2016)

    Article  Google Scholar 

  43. M. Behera, S. Behera, R. Naik, RSC Adv. 7, 18428 (2017)

    Article  Google Scholar 

  44. J. Joy, J. Mathew, S.C. George, ‎Int. J. Hydrog. Energy 43, 4804 (2018)

    Article  Google Scholar 

  45. C. Adel, B.M. Fethi, B. Brahim, Appl. Phys. A 122, 1 (2016)

    Article  Google Scholar 

  46. P. Chal, A. Shit, A.K. Nandi, J. Mater. Chem. C 4, 272 (2016)

    Article  Google Scholar 

  47. V. Nádaždy, K. Gmucová, P. Nádaždy, P. Siffalovic, K. Vegso, M. Jergel, F. Schauer, E. Majkova, J. Phys. Chem. C 122, 5881 (2018)

    Article  Google Scholar 

  48. M. Lee, D. Kim, Y.T. Yoon, Y.I. Kim, Bull. Korean Chem. Soc. 35, 3261–3266 (2014)

    Article  Google Scholar 

  49. S.H. Tamboli, G. Rahman, O.S. Joo, J. Alloys Compd. 520, 232 (2012)

    Article  Google Scholar 

  50. S.M. Panah, R.S. Moakhar, C.S. Chua, A. Kushwaha, T.I. Wong, G.K. Dalapat, RSC Adv. 6, 29383 (2016)

    Article  Google Scholar 

  51. T. Moehl, J. Suh, L. Sévery, R.W. Joliat, S.D. Tilley, ACS Appl Mater Interfaces 9, 43614 (2017)

    Article  Google Scholar 

  52. R. Dom, H.G. Kim, P.H. Borse, CrystEngComm 16, 2432 (2014)

    Article  Google Scholar 

  53. S.K.S. Basha, M.C. Rao, Ceram. Int. 44, 648 (2018)

    Article  Google Scholar 

  54. T.S. Reddy, M.C.S. Kumar, RSC Adv. 6, 95680 (2016)

    Article  Google Scholar 

  55. J.C. Paracchino, J.E. Brauer, E. Moser, M. Thimsen, Graetzel, J. Phys. Chem. C 116, 7341 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

The authors appreciatively acknowledge financial support from the Ministry of Higher Education, Scientific Research and Technology of Tunisia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adel Chihi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chihi, A., Boujmil, M.F. & Bessais, B. Synthesis and characterization of photoactive material Cu2NiSnS4 thin films. J Mater Sci: Mater Electron 30, 3338–3348 (2019). https://doi.org/10.1007/s10854-018-00607-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-00607-z

Navigation