Skip to main content
Log in

The effect of oxygen pressure on the structural and photoluminescence properties of pulsed laser deposited (Y-Gd)3Al5O12:Ce3+ thin films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Thin films of (Y-Gd)3Al5O12:Ce3+ phosphor were deposited on Si (100) substrate by pulsed laser deposition technique at substrate temperature of 300 °C. The effect of oxygen pressure on the structural and photoluminescence properties of the films have been studied. X-ray diffraction analysis confirmed the formation of Y3Al5O12 cubic structure for the films. A slight shift in the diffraction peaks to higher two theta angles was observed from the films when compared to those of the phosphor in powder form. This shift could be attributed to lattice expansion caused by the differences in ionic radius when Y3+ is partially substituted by the larger Gd3+ ion during laser ablation process. The crystallinity of the films increases as a function of oxygen pressure in the range of 1–20 mTorr then decreases with further increase in pressure to 60 mTorr. Surface morphology of the films were significantly affected by oxygen pressure, with an increased in particle number density for film deposited under 20 mTorr oxygen pressure. Photoluminescence spectra show broad band emission centered at around 545 nm arising from the 5d → 4f electronic transition of Ce3+ in the phosphor. The highest PL intensity was obtained from film deposited under 20 mTorr oxygen pressure. Optical measurements show that the films were highly reflective above 500 nm with reflectance up to 94%. Two optical absorption peaks for cerium were observed at around 307 and 467 nm, and found to increase in intensity with oxygen pressure up to 20 mTorr.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M. Siminovitch, LEDs: The Next Generation Light Source. A review of the key technology and market drivers and the directions for high-efficiency lighting (2010), https://cltc.ucdavis.edu/publication/leds-next-generation-light-source. Accessed 9 Jan 2019

  2. M.G. Craford, IEEE Circuits Dev. Mag. 8, 24–29 (1992)

    Article  Google Scholar 

  3. A. Piquette, W. Bergbauer, B. Galler, K.C. Mishra, ECS J. Solid State Sci. Technol. 5(1), 3146–3159 (2016)

    Article  Google Scholar 

  4. S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lüssem, K. Leo, Nature. 459, 234–238 (2009)

    Article  Google Scholar 

  5. P.C. Shen, M.S. Lin, C.F. Lin, Sci. Rep. 4, 5307 (2014)

    Article  Google Scholar 

  6. Q. Wang, D. Ma, Chem. Soc. Rev. 39(7), 2387–2398 (2010)

    Article  Google Scholar 

  7. B.G. Zhai, L.L. Chen, M.Y. Li, Y.M. Huang, Optoelectron. Mater. 2, 8–18 (2018)

    Google Scholar 

  8. Y.X. Pan, M.M. Wu, Q. Su, J. Phys. Chem. Solid. 65, 845 (2004)

    Article  Google Scholar 

  9. Z. Xia, A. Meijerink, Chem. Soc. Rev. 46(1), 275–299 (2017)

    Article  Google Scholar 

  10. A. Potdevin, G. Chadeyron, V. Briois, R. Mahiou, Mater. Chem. Phys. 130, 500 (2011)

    Article  Google Scholar 

  11. V.M. Lisitsyn, Y. Ju, S.A. Stepanov, N.M. Soschin, J. Phys. 830, 012160 (2017)

    Google Scholar 

  12. E.J. Popovici, M. Morar, E. Bica, I. Perhaita, A.I. Cadis, E. Indrea, L. Barbu-Tudoran, J. Optoelectron. Adv. Mater. 13, 617–624 (2011)

    Google Scholar 

  13. J. Wang, T. Han, T. Lang, M. Tu, L. Peng, Opt. Eng. 54(11), 117106 (2015)

    Article  Google Scholar 

  14. C.C. Chiang, M.S. Tsai, M.H. Hon, J. Electrochem. Soc. 154(10), 326–329 (2007)

    Article  Google Scholar 

  15. J.Y. Park, H.C. Jung, G.S.R. Raju, B.K. Moon, J.H. Jeong, S.M. Son, J.H. Kim, Opt. Mater. 32, 293–296 (2009)

    Article  Google Scholar 

  16. H.S. Jang, W.B. Im, D.C. Lee, D.Y. Jeon, S.S. Kim, J. Lumin. 126, 371–377 (2007)

    Article  Google Scholar 

  17. H. Shi, C. Zhu, J. Huang, J. Chen, D. Chen, W. Wang, F. Wang, Y. Cao, X. Yuan, Opt. Mater. Express. 4(4), 649–655 (2014)

    Article  Google Scholar 

  18. V.P. Dotsenko, I.V. Berezovskaya, E.V. Zubar, N.P. Efryushina, N.I. Poletaev, Yu.A. Doroshenko, G.B. Stryganyuk, A.S. Voloshinovskii, J. Alloys Compd. 550, 159–163 (2013)

    Article  Google Scholar 

  19. A.M. Chinie, S. Georgescu, A. Mateescu, A. Stefan, Romanian J. Phys. 51, 827 (2006)

    Google Scholar 

  20. S.J. Wang, L. Lu, M.O. Lai, J.Y.H. Fuh, J. Appl. Phys. 105(8), 084102 (2009)

    Article  Google Scholar 

  21. G.R. Bai, H. Zhang, C.M. Foster, Thin Solid Films 321, 115 (1998)

    Article  Google Scholar 

  22. C. Nethravathi, S. Sen, N. Ravishankar, M. Rajamathi, C. Pietzonka, B. Harbrecht, J. Phys. Chem. B 109(23), 11468 (2005)

    Article  Google Scholar 

  23. T. Minami, T. Yamamoto, T. Miyata, Thin Solid Films, 366 (2000)

  24. S. Kristoulakis, M. Suchea, M. Katharakis, N. Katsarakis, E. Koudoumas, G. Kiriakidis, Rev. Adv. Mater. Sci. 10, 331 (2005)

    Google Scholar 

  25. Y. Kokubun, H. Kimura, S. Nakagomi, J. Appl. Phys. 42, l904 (2003)

    Article  Google Scholar 

  26. E. György, I.N. Mihailescu, M. Kompitsas, A. Giannoudakos, Thin Solid Films 446, 178–183 (2004)

    Article  Google Scholar 

  27. F.J. Ochoa-Estrella, A. Vera-Marquina, I. Mejia, A.L. Leal-Cruz, M. Quevedo-López, J. Mater. Sci. 29(9), 7629–7636 (2018)

    Google Scholar 

  28. T. Peng, H. Yang, X. Pu, B. Hu, Z. Jian, C. Yan, Mater. Lett. 58, 352 (2004)

    Article  Google Scholar 

  29. Y. Shen, N. Xu, W. Hu, X. Xu, J. Sun, Z. Ying, J. Wu, Solid State Electron. 52, 1833 (2008)

    Article  Google Scholar 

  30. A. Matsunawa, S. Katayama, A. Susuki, T. Ariyasu, Trans. JWRI 15, 61 (1986)

    Google Scholar 

  31. S.U. Satilmis, A. Ege, M. Ayvacikli, A. Khatab, E. Ekdal, E.J. Popovici, M. Henini, N. Can, Opt. Mater. 34, 1921–1925 (2012)

    Article  Google Scholar 

  32. C.H. Lu, R. Jagannathan, Appl. Phys. Lett. 80, 3608–3610 (2002)

    Article  Google Scholar 

  33. P. Orgiani, R. Ciancio, A. Galdi, S. Amoruso, L. Maritato, Appl. Phys. Lett. 96, 032501 (2010)

    Article  Google Scholar 

  34. J. Schou, Appl. Surf. Sci. 255, 5191–5198 (2009)

    Article  Google Scholar 

  35. L. Wang, X. Zhang, Z. Hao, Y. Luo, J. Zhang, X. Wang, J. Appl. Phys. 108, 093515 (2010)

    Article  Google Scholar 

  36. B.D. Cullity, S.R. Stock, Elements of X-Ray Diffraction, 3rd edn. (Prentice Hall, Upper Saddle River, 2001)

    Google Scholar 

  37. J. Gonzalo, R.G. San Roman, J. Perriere, C.N. Afonso, R.P. Casero, Appl. Phys. A 66, 487 (1998)

    Article  Google Scholar 

  38. M. Acosta, I. Riech, E. Martin-Tovar, Adv. Condens. Matter Phys. (2013). https://doi.org/10.1155/2013/970976

    Google Scholar 

  39. W. Muying, Y. Shihui, H. Lin, Z. Geng, L. Dongxiong, Z. Weifeng, Appl. Surf. Sci. 292, 219 (2014)

    Article  Google Scholar 

  40. K. Ajay, K. Davinder Kaur, J. Nanoparticle Res. 13, 2485–2496 (2011)

    Article  Google Scholar 

  41. M.Y. Kim, D.S. Bae, Korean J. Mater. Res. 23(1), 31–34 (2013)

    Article  Google Scholar 

  42. M.P. Deshpande, N. Garg, S.V. Bhatt, P. Sakariya, S.H. Chaki, Mater. Sci. Semicond. Proc. 16(3), 915–22 (2013)

    Article  Google Scholar 

  43. A.B. Adriano, N.S. Ferreiraab, M.E. Valerio, RSC Adv. 7, 26839–26848 (2017)

    Article  Google Scholar 

  44. N. Gonçalves, J. Carvalho, Z. Lima, J. Sasaki, Mater. Lett. 72, 36–38 (2012)

    Article  Google Scholar 

  45. Z.V. Ooi, A.E.A. Saif, Y. Wahab, Z.A.Z. Jamal, In AIP Conference Proceedings., vol. 1835, No. 1 (AIP Publishing, Melville, 2017), p. 020011

  46. R. Kelly, A. Miotello, D.B. Chrisey, G. K. Hubler, Pulsed Laser Deposition of Thin Films, 55 (Wiley, New York, 1994)

    Google Scholar 

  47. C.A. Schneider, W.S. Rasband, K.W. Eliceiri, Nature Methods. 9, 671–675 (2012)

    Article  Google Scholar 

  48. A. Infortuna, A.S. Harvey, L.J. Gauckler, Adv. Funct. Mater. 18, 127–135 (2008)

    Article  Google Scholar 

  49. V. Lojpur, A. Egelja, J. Pantić, V. Đorđević, B. Matović, M.D. Dramićanin, Sci. Sinter. 46(1), 75–82 (2014)

    Article  Google Scholar 

  50. A. Potdevin, G. Chadeyron, D. Boyer, R. Mahiou, J. Appl. Phys. 102, 073536 (2007)

    Article  Google Scholar 

  51. P.Y. Jia, J. Lin, X.M. Han, M. Yu, P.Y., Thin Solid Films 483, 122–129 (2005)

    Article  Google Scholar 

  52. V. Bachmann, C. Ronda, A. Meijerink, Chem. Mater. 21(10), 2077–2084 (2009)

    Article  Google Scholar 

  53. S.P. Feofilov, D.V. Arsentyev, A.B. Kulinkin, T. Gacoin, G. Mialon, R.S. Meltzer, C. Dujardin, J. Appl. Phys. 107, 064308 (2010)

    Article  Google Scholar 

  54. Q. Li, L. Gao, D. Yan, Mater. Chem. Phys. 64, 41 (2000)

    Article  Google Scholar 

  55. V. Tucureanu, A. Matei, I. Mihalache, M. Danila, M. Popescu, B. Bita, J. Mater. Sci. 50, 1883–1890 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the University of the Free State and CSIR, South Africa, for providing us with the pulsed laser deposition system (PLD) for sample preparation. This project work is supported by the Africa Laser Center (ALC). We would like to acknowledge, Lucas Erasmus at the Physics Department, University of the Free State for assisting with the thin film deposition using the pulsed laser deposition (PLD) technique.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. B. Dejene.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korir, P.C., Dejene, F.B. The effect of oxygen pressure on the structural and photoluminescence properties of pulsed laser deposited (Y-Gd)3Al5O12:Ce3+ thin films. J Mater Sci: Mater Electron 30, 3257–3267 (2019). https://doi.org/10.1007/s10854-018-00598-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-00598-x

Navigation