Skip to main content
Log in

Preparation and properties of La0.71Ca0.29Mn1−xCrxO3 polycrystalline composites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

La0.71Ca0.29Mn1−xCrxO3 (x = 0, 0.01, 0.03, 0.05 and 0.10) polycrystalline ceramics were synthesized by sol–gel method with methanol as solvent. X-ray diffraction results assisted with Rietveld refinement analysis showed that all samples crystallized in the orthorhombic structure with Pnma space group. The Cr substitution modified not only the Mn–O bond length, but also the Mn–O–Mn bond angle. Scanning electron microscope (SEM) micrographs revealed that the samples had high density and dense grain boundary. Temperature dependence of resistivity (ρ–T) curves showed that all samples had metal–insulator transition (TMI) phenomenon. By the way, TMI decreased with the increase in Cr content. When the sample was applied with a magnetic field, the resistivity decreased and TMI shifted to the higher temperature region. The temperature coefficient of resistivity (TCR) of the sample reached the highest value of 38.9%·K−1 at x = 0.01, indicating that TCR can be subtly improved by slight substitution of Mn-site, thereby the colossal magneto-resistance materials have a huge application potential in bolometer/infrared detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S.O. Manjunatha, A. Rao, P.D. Babu, G.S. Okram, Studies on magneto-resistance, magnetization and thermoelectric power of Cr substituted La0.65Ca0.35Mn1–xCrxO3 (0 ≤ x ≤ 0.07) manganites. Physica B 475, 1–9 (2015)

    Article  CAS  Google Scholar 

  2. X.L. Xu, Y. Li, F.F. Hou, Q. Cheng, R.Z. SU, Effect of Co substitution on magnetic ground state in Sm0.5Ca0.5MnO3. J. Alloys Compd. 628, 89–96 (2015)

    Article  CAS  Google Scholar 

  3. M.H. Phan, S.C. Yu, Review of the magnetocaloric effect in manganite materials. J. Magn. Magn Mater. 308, 325–340 (2007)

    Article  CAS  Google Scholar 

  4. E.L. Nagaev, Colossal-magnetoresistance materials: manganites and conventional ferromagnetic semiconductors. Phys. Rep. 346, 387–581 (2001)

    Article  CAS  Google Scholar 

  5. S. Mathur, H. Shen, Structural and physical properties of La2/3Ca1/3MnO3 prepared via a modified sol-gel method. J. Sol-Gel Sci. Technol. 25, 147–157 (2002)

    Article  CAS  Google Scholar 

  6. K. Das, I. Das, Magnetic and magnetoresistive properties of half-metallic ferromagnetic and charge ordered modified ferromagnetic manganite nanoparticles. J. Appl. Phys. 121, 103904 (2017)

    Article  Google Scholar 

  7. L.W. Lei, Z.Y. Fu, J.Y. Zhang, H. Wang, K. Niihara, Low field magnetoresistance of La0.7Ca0.3MnO3ceramics fabricated by fast sintering process. J. Alloys Compd. 530, 164–168 (2012)

    Article  CAS  Google Scholar 

  8. F. Jin, H. Zhang, X.H. Chen, X. Liu, Q.M. Chen, Enhancement of temperature coefficient of resistance (TCR) and magneto-resistance (MR) in La1–xCaxMnO3:Ag0.2 polycrystalline composites. J. Sol-Gel Sci. Technol. 82, 193–200 (2017)

    Article  CAS  Google Scholar 

  9. G.H. Jonker, J.H. Van Santen, Ferromagnetic compounds of manganese with perovskite structure. J. Phys. 16, 337–349 (1950)

    CAS  Google Scholar 

  10. A.R. Jun Zang, H. Bishop, Röder, Double degeneracy and Jahn-Teller effects in colossal-magnetoresistance perovskites. Phys. Rev. B 53, R8840 (1996)

    Article  Google Scholar 

  11. A.J. Millis, P.B. Littlewood, B.I. Shraiman, Double exchange alone does not explain the resistivity of La1−xSrxMnO3. Phys. Rev. Lett. 74, 5144 (1995)

    Article  CAS  Google Scholar 

  12. A. Krichene, P.S. Solanki, S. Rayaprol, V. Ganesan, W. Boujelben, D.G. Kuberkar, B-site bismuth doping effect on structural, magnetic and magnetotransport properties of La0.5Ca0.5Mn1–xBixO3. Ceram. Int. 41, 2637–2647 (2015)

    Article  CAS  Google Scholar 

  13. G.W. Kim, S. Kumar, J. Chang, C.G. Lee, B.H. Koo, Magnetic and electrical properties of La0.7Ca0.3Mn0.95Co0.05O3 epitaxial layers by pulsed laser deposition. Ceram. Int. 38S, S443–S446 (2012)

    Article  Google Scholar 

  14. S. Mollah, I. Dhiman, A. Das, Structural and magnetic properties of La0.85Ca0.15Mn1–xCrxO3. Mater. Lett. 65, 922–925 (2011)

    Article  CAS  Google Scholar 

  15. N. Kumar, H. Kishan, A. Rao, V.P. Awana, Structural, electrical, magnetic, and thermal studies of Cr-doped La0.7Ca0.3Mn1–xCrxO3 (0 ≤ x ≤ 1) manganites. J. Appl. Phys. 107, 083905 (2010)

    Article  Google Scholar 

  16. J.C. Debnath, J. Wang, Magnetic and electrical response of Co-doped La0.7Ca0.3MnO3 manganites/insulator system. Physica B 504, 58–62 (2017)

    Article  CAS  Google Scholar 

  17. Y. Sun, X. Xu, Y. Zhang, Effects of Cr doping in La0.67Ca0.33MnO3: magnetization, resistivity, and thermopower. Phys. Rev. B 63, 054404 (2000)

    Article  Google Scholar 

  18. X. Chen, H. Zhang, F. Jin, X. Liu, Q. Chen, Fabrication of La(x)Nd0.67−xSr0.33MnO3 polycrystalline ceramics by sol-gel method. J. Sol-Gel Sci. Technol. 80, 168–173 (2016)

    Article  CAS  Google Scholar 

  19. X. Xiao, S.L. Yuan, Y.Q. Wang, G.M. Ren, J.H. Miao, G.Q. Yu, Z.M. Tian, L. Liu, L. Chen, S.Y. Yin, Comparison of the magnetic and electrical transport properties of La2/3Ca1/3Mn1−xCrxO3 and La2/3+xCa1/3−xMn1−xCrxO3 (x = 0 and 0.06). Solid State Commun. 141, 348–353 (2007)

    Article  CAS  Google Scholar 

  20. D.G. Kuberkar, R.R. Doshi, P.S. Solanki, U. Khachar, M. Vagadia, A. Ravalia, V. Ganesan, Grain morphology and size disorder effect on the transport and magnetotransport in Sol-Gel grown nanostructured manganites. Appl. Surf. Sci. 258, 9041–9046 (2012)

    Article  CAS  Google Scholar 

  21. S. Roy, I.S. Dubenko, A.Y. Ignatov, N. Ali, Study of the colossal magnetoresistance properties of the compound La1 – xSrxAyMn1–yO3 (A=Cr, Re). J. Phys. 12, 9465–9479 (2000)

    CAS  Google Scholar 

  22. N. Kumar, H. Kishan, A. Rao, V.P. Awana, Fe ion doping effect on electrical and magnetic properties of La0.7Ca0.3Mn1–xFexO3 (0 ≤ x ≤ 1). J. Alloys Compd. 502, 283–288 (2010)

    Article  CAS  Google Scholar 

  23. L.M. Wang, C.Y. Wang, C.C. Tseng, Correlation of the temperature coefficient of resistivity for doped manganites to the transition temperature, polaron binding energy, and magnetic order. Appl. Phys. Lett. 100, 232403 (2012)

    Article  Google Scholar 

  24. G. Venkataiah, V. Prasad, P. Venugopal Reddy, Influence of A-site cation mismatch on structural, magnetic and electrical properties of lanthanum manganites. J. Alloy Compd. 429, 1–9 (2007)

    Article  CAS  Google Scholar 

  25. X.W. Li, A. Gupta, G. Xiao, G.Q. Gong, Low-field magnetoresistive properties of polycrystalline and epitaxial perovskite manganite films. Appl. Phys. Lett. 71, 1124–1126 (1997)

    Article  CAS  Google Scholar 

  26. A. Gupta, G. Gong, G. Xiao, P. Duncombe, P. Lecoeur, P. Trouilloud, Y. Wang, V. Dravid, J. Sun, Grain-boundary effects on the magnetoresistance properties of perovskite manganite films. Phys. Rev. B 54, R15629–R15632 (1996)

    Article  CAS  Google Scholar 

  27. L.E. Hueso, J. Rivas, F. Rivadulla, M.A. López-Quintela, Magnetoresistance in manganite/alumina nanocrystalline composites. J. Appl. Phys. 89, 1746–1750 (2001)

    Article  CAS  Google Scholar 

  28. Q. Huang, Z.W. Li, J. Li, C.K. Ong, Effect of Fe doping on high field magnetoresistance and low field magnetoresistance at zero field in polycrystalline La0.7Sr0.3Mn1–xFexO3(x = 0-0.12) thin films. J. Appl. Phys. 89, 7410–7412 (2001)

    Article  CAS  Google Scholar 

  29. T. Sudyoadsuk, R. Suryanarayanan, P. Winotai, Effect of Cr and Fe substitutions on the magnetotransport properties of the charge-ordered manganite La0.4Ca0.6MnO3. J. Magn. Magn. Mater. 272, E1379–E1382 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Training project of Kunming university of science and technology (No. KKSY201451080) and National Natural Science Foundation of China (No. 11564021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, K., Li, Z., Li, D. et al. Preparation and properties of La0.71Ca0.29Mn1−xCrxO3 polycrystalline composites. J Mater Sci: Mater Electron 29, 19070–19077 (2018). https://doi.org/10.1007/s10854-018-0033-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-0033-x

Navigation