Skip to main content
Log in

Increase of antimicrobial and photocatalytic properties of silver-doped PbS obtained by sonochemical method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, pure PbS powders doped with silver were obtained in the proportions of 1, 2, 4 and 8 mol% by sonochemical method. Powders were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), UV–Vis spectroscopy (UV–Vis) and EPR analysis. The photocatalytic properties were estimated by degradation of methylene blue dye. The antimicrobial properties were studied by the formation of inhibition halos against Escherichia coli and Staphylococcus aureus bacteria and Candida albicans yeast. XRD patterns show that PbS, with a cubic structure, was obtained without the formation of secondary phases. FE-SEM analysis indicates loss of the cubic aspect of PbS samples as the Ag+ concentration increases and particle size reduces. The defects generated by the substitution of Pb2+ by Ag+ increase the photocatalytic activity, where PbS and P8A samples reduced by 25% and 68%, respectively, the MB concentration and significantly increased the antimicrobial activity against E. coli and S. aureus bacteria and C. albicans yeast.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. D. Sánchez-Rodríguez, M.G. Méndez Medrano, H. Remita, V. Escobar-Barrios, Photocatalytic properties of BiOCl-TiO2 composites for phenol photodegradation. J. Environ. Chem. Eng. 6, 1601–1612 (2018)

    Article  Google Scholar 

  2. M.B. Askari, Z. Tavakoli Banizi, M. Seifi, S. Bagheri Dehaghi, P. Veisi, Synthesis of TiO2 nanoparticles and decorated multi-wall carbon nanotube (MWCNT) with anatase TiO2 nanoparticles and study of optical properties and structural characterization of TiO2/MWCNT nanocomposite. Optik 149, 447–454 (2017)

    Article  CAS  Google Scholar 

  3. A. Kunz, P. Peralta-Zamora, S.G.d. Moraes, N. Durán, Novas tendências no tratamento de efluentes têxteis. Química Nova 25, 78–82 (2002)

    Article  CAS  Google Scholar 

  4. T. Stephenson, Wastewater microbiology. By Gabriel Bitton, Wiley–Liss, New York, 1994, ix + 478 pp., price £103.00. ISBN 0 471 30985 0. J. Chem. Technol. Biotechnol. 64, 213–214 (1995)

    Article  CAS  Google Scholar 

  5. R.M. Dallago, A. Smaniotto, L.C.A.d. Oliveira, Resíduos sólidos de curtumes como adsorventes para a remoção de corantes em meio aquoso. Química Nova 28, 433–437 (2005)

    Article  CAS  Google Scholar 

  6. N.M. Mahmoodi, S. Keshavarzi, M. Ghezelbash, Synthesis of nanoparticle and modelling of its photocatalytic dye degradation ability from colored wastewater. J. Environ. Chem. Eng. 5, 3684–3689 (2017)

    Article  CAS  Google Scholar 

  7. X. Rong, F. Qiu, C. Zhang, L. Fu, Y. Wang, D. Yang, Preparation, characterization and photocatalytic application of TiO2–graphene photocatalyst under visible light irradiation. Ceram. Int. 41, 2502–2511 (2015)

    Article  CAS  Google Scholar 

  8. C.A. Demarchi, A. Bella Cruz, A. Ślawska-Waniewska, N. Nedelko, P. Dłużewski, A. Kaleta, J. Trzciński, J.D. Magro, J. Scapinello, C.A. Rodrigues, Synthesis of Ag@Fe2O3 nanocomposite based on O-carboxymethylchitosan with antimicrobial activity. Int. J. Biol. Macromol. 107, 42–51 (2018)

    Article  CAS  Google Scholar 

  9. J.R. Koduru, S.K. Kailasa, J.R. Bhamore, K.-H. Kim, T. Dutta, K. Vellingiri, Phytochemical-assisted synthetic approaches for silver nanoparticles antimicrobial applications: a review. Adv. Coll. Interface. Sci. 256, 326–339 (2018)

    Article  CAS  Google Scholar 

  10. X. Wang, C. Zhou, W. Wang, B. Du, J. Cai, G. Feng, R. Zhang, CdSe nanoparticle-sensitized ZnO sheets for enhanced photocatalytic hydrogen evolution rates. J. Alloy. Compd. 747, 826–833 (2018)

    Article  CAS  Google Scholar 

  11. H. Naz, R.N. Ali, X. Zhu, B. Xiang, Effect of Mo and Ti doping concentration on the structural and optical properties of ZnS nanoparticles. Phys. E 100, 1–6 (2018)

    Article  CAS  Google Scholar 

  12. X.F. Jia, Q.Y. Hou, Z.C. Xu, L.F. Qu, Effect of Ce doping on the magnetic and optical properties of ZnO by the first principle. J. Magn. Magn. Mater. 465, 128–135 (2018)

    Article  CAS  Google Scholar 

  13. A.J. Haider, R.H. Al–, G.R. Anbari, C.T. Kadhim, Salame, Exploring potential environmental applications of TiO2 nanoparticles. Energy Procedia 119, 332–345 (2017)

    Article  CAS  Google Scholar 

  14. N.F.A. Neto, L.M.P. Garcia, E. Longo, M.S. Li, C.A. Paskocimas, M.R.D. Bomio, F.V. Motta, Photoluminescence and photocatalytic properties of Ag/AgCl synthesized by sonochemistry: statistical experimental design. J. Mater. Sci. 28, 12273–12281 (2017)

    Google Scholar 

  15. C.-H. Lin, W.-C. Chang, X. Qi, Growth and characterization of pure and doped SnO2 Films for H2 gas detection. Proc. Eng. 36, 476–481 (2012)

    Article  CAS  Google Scholar 

  16. J.-S. Kim, B.-H. Kang, H.-M. Jeong, S.-W. Kim, B. Xu, S.-W. Kang, Quantum dot light emitting diodes using size-controlled ZnO NPs. Curr. Appl. Phys. 18, 681–685 (2018)

    Article  Google Scholar 

  17. H. Sivaram, D. Selvakumar, A. Alsalme, A. Alswieleh, R. Jayavel, Enhanced performance of PbO nanoparticles and PbO-CdO and PbO-ZnO nanocomposites for supercapacitor application. J. Alloy. Compd. 731, 55–63 (2018)

    Article  CAS  Google Scholar 

  18. F.-Y. Liu, J.-H. Lin, Y.-M. Dai, L.-W. Chen, S.-T. Huang, T.-W. Yeh, J.-L. Chang, C.-C. Chen, Preparation of perovskites PbBiO2I/PbO exhibiting visible-light photocatalytic activity. Catal. Today (2018). https://doi.org/10.1016/j.cattod.2018.02.006

    Article  Google Scholar 

  19. H. Wang, Y. Li, Y. Wang, J. Ma, S. Hu, H. Hou, J. Yang, Three-dimensional B-doped porous carbon framework anchored with ultrasmall PbO/Pb nanocrystals for lithium storage. Ceram. Int. 43, 12442–12451 (2017)

    Article  CAS  Google Scholar 

  20. Z. He, M.D. Hayat, S. Huang, X. Wang, P. Cao, PbO2 electrodes prepared by pulse reverse electrodeposition and their application in benzoic acid degradation. J. Electroanal. Chem. 812, 74–81 (2018)

    Article  CAS  Google Scholar 

  21. A.R. Mandal, A. Bekturganova, A. Ishteev, S.P. Choudhury, G. Karunakaran, D. Kunetsov, Effect of silver doping on the current–voltage characteristic of PbS nanorods. Phys. E 79, 147–151 (2016)

    Article  CAS  Google Scholar 

  22. Y.-X. Zhang, Z. Ma, Z.-H. Ge, P. Qin, F. Zheng, J. Feng, Highly enhanced thermoelectric properties of Cu1.8S by introducing PbS. J. Alloy. Compd. 764, 738–744 (2018)

    Article  CAS  Google Scholar 

  23. H. Guan, Y. Liu, Z. Bai, J. Zhang, S. Yuan, B. Zhang, Ag nanoparticles embedded in N-doped carbon nanofibers: a superior electrocatalyst for hydrogen peroxide detection. Mater. Chem. Phys. 213, 335–342 (2018)

    Article  CAS  Google Scholar 

  24. L. Hu, Z. Zhang, R.J. Patterson, Y. Hu, W. Chen, C. Chen, D. Li, C. Hu, C. Ge, Z. Chen, L. Yuan, C. Yan, N. Song, Z.L. Teh, G.J. Conibeer, J. Tang, S. Huang, Achieving high-performance PbS quantum dot solar cells by improving hole extraction through Ag doping. Nano Energy 46, 212–219 (2018)

    Article  CAS  Google Scholar 

  25. B. Toby, EXPGUI, a graphical user interface for GSAS. J. Appl. Crystallogr. 34, 210–213 (2001)

    Article  CAS  Google Scholar 

  26. D.L. Wood, J. Tauc, Weak absorption tails in amorphous semiconductors. Phys. Rev. B 5, 3144–3151 (1972)

    Article  Google Scholar 

  27. E. Araújo, A.S. Pimenta, F.M.C. Feijó, R.V.O. Castro, M. Fasciotti, T.V.C. Monteiro, K.M.G. Lima, Antibacterial and antifungal activities of pyroligneous acid from wood of Eucalyptus urograndis and Mimosa tenuiflora. J. Appl. Microbiol. 124, 85–96 (2017)

    Article  Google Scholar 

  28. Z. Tshemese, M.D. Khan, S. Mlowe, N. Revaprasadu, Synthesis and characterization of PbS nanoparticles in an ionic liquid using single and dual source precursors. Mater. Sci. Eng. 227, 116–121 (2018)

    Article  CAS  Google Scholar 

  29. M. El-Kemary, I. El-Mehasseb, H. El-Shamy, Ag-doped CdO nanocatalysts: preparation, characterization and catechol oxidase activity. J. Mol. Struct. 1161, 83–88 (2018)

    Article  CAS  Google Scholar 

  30. H. Rietveld, A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 2, 65–71 (1969)

    Article  CAS  Google Scholar 

  31. M.J. McKelvy, R. Sharma, A.V.G. Chizmeshya, R.W. Carpenter, K. Streib, Magnesium hydroxide dehydroxylation: in situ nanoscale observations of lamellar nucleation and growth. Chem. Mater. 13, 921–926 (2001)

    Article  CAS  Google Scholar 

  32. F.V. Motta, A.P.A. Marques, M.S. Li, M.F.C. Abreu, C.A. Paskocimas, M.R.D. Bomio, R.P. Souza, J.A. Varela, E. Longo, Preparation and photoluminescence characteristics of In(OH)3:xTb3 + obtained by Microwave-Assisted Hydrothermal method. J. Alloy. Compd. 553, 338–342 (2013)

    Article  CAS  Google Scholar 

  33. R. Kroon, Nanoscience and the Scherrer equation versus the’Scherrer-Gottingen equation’. S. Afr. J. Sci. 109, 01–02 (2013)

    Article  Google Scholar 

  34. S. Hu, R. Ouyang, W.-X. Li, First-principles kinetics study of carbon monoxide promoted Ostwald ripening of Au particles on FeO/Pt(111). J. Energy Chem. (2018). doi.https://doi.org/10.1016/j.jechem.2018.03.023

    Article  Google Scholar 

  35. J. Santos, N. Calero, L.A. Trujillo-Cayado, M.C. Garcia, J. Muñoz, Assessing differences between Ostwald ripening and coalescence by rheology, laser diffraction and multiple light scattering. Coll. Surf. B 159, 405–411 (2017)

    Article  CAS  Google Scholar 

  36. A. Seweryn, Interactions between surfactants and the skin – Theory and practice. Adv. Coll. Interface. Sci. 256, 242–255 (2018)

    Article  CAS  Google Scholar 

  37. C. Dong, X. Xiao, G. Chen, H. Guan, Y. Wang, Morphology control of porous CuO by surfactant using combustion method. Appl. Surf. Sci. 349, 844–848 (2015)

    Article  CAS  Google Scholar 

  38. L. Tolvaj, K. Mitsui, D. Varga, Validity limits of Kubelka–Munk theory for DRIFT spectra of photodegraded solid wood. Wood Sci. Technol. 45, 135–146 (2011)

    Article  CAS  Google Scholar 

  39. M. Molaei, S. Abbasi, M. Karimipour, F. Dehghan, A simple UV-assisted, room temperature approach for synthesis of water soluble PbS and PbS/CdS core-shell QDs. Mater. Chem. Phys. 216, 186–190 (2018)

    Article  CAS  Google Scholar 

  40. E. Akbay, T.G. Ölmez, Sonochemical synthesis and loading of PbS nanoparticles into mesoporous silica. Mater. Lett. 215, 263–267 (2018)

    Article  CAS  Google Scholar 

  41. J.C. Sczancoski, L.S. Cavalcante, N. Marana, R. Oliveira da Silva, R.L. Tranquilin, M. Rincón-Joya, P. Pizani, J. Varela, J. Sambrano, M. Li, E. Longo, J. Andrés, Electronic Structure and optical properties of BaMoO4 powders. Curr. Appl. Phys. 10 (2010) 614–624

    Article  Google Scholar 

  42. T. Ali, A. Ahmed, U. Alam, I. Uddin, P. Tripathi, M. Muneer, Enhanced photocatalytic and antibacterial activities of Ag-doped TiO2 nanoparticles under visible light. Mater. Chem. Phys. 212, 325–335 (2018)

    Article  CAS  Google Scholar 

  43. M.M. Momeni, M. Hakimian, A. Kazempour, In-situ manganese doping of TiO2 nanostructures via single-step electrochemical anodizing of titanium in an electrolyte containing potassium permanganate: a good visible-light photocatalyst. Ceram. Int. 41, 13692–13701 (2015)

    Article  CAS  Google Scholar 

  44. M. Mittal, A. Gupta, O.P. Pandey, Role of oxygen vacancies in Ag/Au doped CeO2 nanoparticles for fast photocatalysis. Sol. Energy 165, 206–216 (2018)

    Article  CAS  Google Scholar 

  45. M. Stefan, C. Leostean, O. Pana, D. Toloman, A. Popa, I. Perhaita, M. Senilă, O. Marincas, L. Barbu-Tudoran, Magnetic recoverable Fe3O4-TiO2:Eu composite nanoparticles with enhanced photocatalytic activity. Appl. Surf. Sci. 390, 248–259 (2016)

    Article  CAS  Google Scholar 

  46. H. Pan, X. Zhao, Z. Fu, W. Tu, P. Fang, H. Zhang, Visible-light induced photocatalysis of AgCl@Ag/titanate nanotubes/nitrogen-doped reduced graphite oxide composites. Appl. Surf. Sci. 442, 547–555 (2018)

    Article  CAS  Google Scholar 

  47. M.J. Scaini, G.M. Bancroft, S.W. Knipe, X.P.S. An, AES, and SEM study of the interactions of gold and silver chloride species with PbS and FeS2: Comparison to natural samples. Geochim. Cosmochim. Acta 61, 1223–1231 (1997)

    Article  CAS  Google Scholar 

  48. A.R. Mandal, S.K. Mandal, Electron spin resonance in silver-doped PbS nanorods. J. Exp. Nanosci. 5, 189–198 (2010)

    Article  CAS  Google Scholar 

  49. B. Clerjaud, A. Gélineau, Strong spin-lattice coupling of Kramers doublets. Phys. Rev. B 16, 82–85 (1977)

    Article  CAS  Google Scholar 

  50. L. Elsellami, F. Dappozze, A. Houas, C. Guillard, Effect of Ag + reduction on the photocatalytic activity of Ag-doped TiO2. Superlattices Microstruct. 109, 511–518 (2017)

    Article  CAS  Google Scholar 

  51. M. Zare, K. Namratha, K. Byrappa, D.M. Surendra, S. Yallappa, B. Hungund, Surfactant assisted solvothermal synthesis of ZnO nanoparticles and study of their antimicrobial and antioxidant properties. J. Mater. Sci. Technol. 34, 1035–1043 (2018)

    Article  Google Scholar 

  52. M. Rehan, T.A. Khattab, A. Barohum, L. Gätjen, R. Wilken, Development of Ag/AgX (X = Cl, I) nanoparticles toward antimicrobial, UV-protected and self-cleanable viscose fibers. Carbohyd. Polym. 197, 227–236 (2018)

    Article  CAS  Google Scholar 

  53. D. Rehana, D. Mahendiran, R. Manigandan, V. Narayanan, A. Kalilur, Rahiman, Evaluation of photocatalytic, antimicrobial and anticancer activities of ZnO/MS (M = Zn, Cd or Pb) core/shell nanoparticles. Mater. Sci. Eng. 225, 20–32 (2017)

    Article  CAS  Google Scholar 

  54. A.V. Badarinath, K. Mallikarjuna Rao, C. Madhu Sudhana Chetty, S. Ramkanth, T.V.S. Rajan, K. Gnanaprakash, A review on In-vitro antioxidant methods: comparisions, correlations and considerations. Int. J. PharmTech Res. 2, 1276–1285 (2010)

    CAS  Google Scholar 

  55. S.M. Dizaj, F. Lotfipour, M. Barzegar-Jalali, M.H. Zarrintan, K. Adibkia, Antimicrobial activity of the metals and metal oxide nanoparticles. Mater. Sci. Eng. 44, 278–284 (2014)

    Article  CAS  Google Scholar 

  56. Y. Xie, Y. He, P.L. Irwin, T. Jin, X. Shi, Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Appl. Environ. Microbiol. 77, 2325–2331 (2011)

    Article  CAS  Google Scholar 

  57. M. Li, L. Zhu, D. Lin, Toxicity of ZnO nanoparticles to escherichia coli: mechanism and the influence of medium components. Environ. Sci. Technol. 45, 1977–1983 (2011)

    Article  CAS  Google Scholar 

  58. N.M. Franklin, N.J. Rogers, S.C. Apte, G.E. Batley, G.E. Gadd, P.S. Casey, Comparative toxicity of nanoparticulate ZnO, Bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): the importance of particle solubility. Environ. Sci. Technol. 41, 8484–8490 (2007)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the financial support of the Brazilian research financing institutions: CNPq. No 307546/2014-4 and CAPES/PROCAD 2013/2998/2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. F. Andrade Neto.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure S1 - Photomacrographs for (a) PbS, (b) P1A, (c) P2A, (d) P4A and (e) P8A (TIF 4677 KB)

10854_2018_31_MOESM2_ESM.tif

Supplementary Figure S2 - XRD patterns for the (a) PbS, (b) P1A, (c) P2A, (d) P4A and (e) P8A samples after the photocatalytic test (TIF 3198 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andrade Neto, N.F., Oliveira, Y.G., Paskocimas, C.A. et al. Increase of antimicrobial and photocatalytic properties of silver-doped PbS obtained by sonochemical method. J Mater Sci: Mater Electron 29, 19052–19062 (2018). https://doi.org/10.1007/s10854-018-0031-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-0031-z

Navigation