Skip to main content
Log in

The capability of SnTe QDs as QDSCs working in the visible–NIR region and the effects of Eu-doping on improvement of solar cell parameters

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The current work is the first effort to show the capability of SnTe quantum dots (QDs) in as a quantum dots solar cell device, which work in visible-near-infrared (NIR) regions, and improvement of the solar cell parameters by Eu-doping. Undoped and Eu-doped SnTe QDs with different Eu concentration from 2 to 6% were synthesized by a co-precipitation method. X-ray diffraction patterns and transmission electron microscopy images indicated that, crystallite and particle size of the samples were decreased by increasing of Eu content. Fourier-transform infrared (FTIR) and Raman spectroscopy results revealed that some vibration modes were appeared and disappeared by Eu-doping. According to the photoluminescence (PL) results, PL intensity of the doped sample was enhanced significantly in the green region in comparison to the PL intensity of the undoped sample. Ultraviolet-visible-near infrared spectroscopy results indicated that the pristine and Eu(2%)-doped samples don’t have any absorption in the visible region, while, Eu(4% and 6%)-doped SnTe QDs showed a good absorption in this region. Photocurrent measurements showed that, unlike the pristine and Eu(2%)-doped QDs, Eu(4% and 6%)-doped SnTe QDs showed a high responsivity in the visible and NIR regions. Solar cell measurements showed that, solar cell parameters such as short current density (Jsc), open circuit voltage (Voc), conversion efficiency values (η), and fill factor (FF) were increased by Eu-doping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. C. Cai, L. Zhai, Y. Ma, C. Zou, L. Zhang, Y. Yang, S. Huang, Huang, J. Power. Sources 341, 11–18 (2017)

    Article  CAS  Google Scholar 

  2. Y. Wang, Q. Zhang, F. Huang, Z. Li, Y.-Z. Zheng, X. Tao, G. Cao, Nano Energy 44, 135–143 (2018)

    Article  CAS  Google Scholar 

  3. G. Wang, H. Wei, J. Shi, Y. Xu, H. Wu, Y. Luo, D. Li, Q. Meng, Nano Energy 35, 17–25 (2017)

    Article  CAS  Google Scholar 

  4. H. Song, H. Rao, X. Zhong, J. Mater. Chem. A 6, 4895–4911 (2018)

    Article  CAS  Google Scholar 

  5. Z. Xu, T. Li, F. Zhang, X. Hong, S. Xie, M. Ye, W. Guo, X. Liu, Nanoscale 9, 3826–3833 (2017)

    Article  CAS  Google Scholar 

  6. P.K. Sarswat, S. Sarkar, G. Yi, M.L. Free, J. Phys. Chem. C 121, 18263–18273 (2017)

    Article  CAS  Google Scholar 

  7. T. Jiang, Y. Zang, H. Sun, X. Zheng, Y. Liu, Y. Gong, L. Fang, X. Cheng, K. He, Adv. Opt. Mater. 5, 1600727 (2017)

    Article  Google Scholar 

  8. M.V. Kovalenko, W. Heiss, E.V. Shevchenko, J.-S. Lee, H. Schwinghammer, A. Paul Alivisatos, D.V. Talapin, J. Am. Chem. Soc. 129, 11354–11355 (2007)

    Article  CAS  Google Scholar 

  9. Z. Weng, S. Ma, H. Zhu, Z. Ye, T. Shu, J. Zhou, X. Wu, H. Wu, Sol. Energy. Mater. Sol. Cells 179, 276–282 (2018)

    Article  CAS  Google Scholar 

  10. S. Xu, W. Zhu, H. Zhao, L. Xu, P. Sheng, G. Zhao, Y. Deng, J. Alloy. Compd. 737, 167–173 (2018)

    Article  CAS  Google Scholar 

  11. S. Gu, K. Ding, J. Pan, Z. Shao, J. Mao, X. Zhang, J. Jie, J. Mater. Chem. A. 5, 11171–11178 (2017)

    Article  CAS  Google Scholar 

  12. X.J. Tan, H.Z. Shao, J. He, G.Q. Liu, J.T. Xu, J. Jiang, H.C. Jiang, Phys. Chem. Chem. Phys. 18, 7141–7147 (2016)

    Article  CAS  Google Scholar 

  13. X. Tan, X. Tan, G. Liu, J. Xu, H. Shao, H. Hu, M. Jin, H. Jiang, J. Jiang, J. Mater. Chem. C. 5, 7504–7509 (2017)

    Article  CAS  Google Scholar 

  14. R. Yousefi, J. Beheshtian, S.M. Seyedeh-Talebi, H.R. Azimi, F. Jamali-Sheini, Chem. Asian J. 13, 194–203 (2018)

    Article  CAS  Google Scholar 

  15. R. Yousefi, H.R. Azimi, M.R. Mahmoudian, W.J. Basirun, Appl. Surf. Sci. 435, 886–893 (2018)

    Article  CAS  Google Scholar 

  16. M.A. Baghchesara, M. Cheraghizade, R. Yousefi, Mater. Lett. 162, 195–198 (2016)

    Article  Google Scholar 

  17. Y. Sun, G. Chen, H. Deng, L. Yang, C. Liu, Y. Sui, S. Lv, M. Wei, J. Yang, Phys. Status Solidi A 214, 1700458 (2017)

    Article  Google Scholar 

  18. Y. Sun, J. Yang, L. Yang, J. Cao, M. Gao, Z. Zhang, Z. Wang, H. Song, J. Solid State Chem. 200, 258–264 (2013)

    Article  CAS  Google Scholar 

  19. M. Nouri, A. Moghaddam Saray, H.R. Azimi, R. Yousefi, Ceram. Int. 43, 14983–14988 (2017)

    Article  CAS  Google Scholar 

  20. M. Peng, G. Bi, C. Cai, G. Guo, H. Wu, Z. Xu, Opt. Lett. 41, 1466–1469 (2016)

    Article  CAS  Google Scholar 

  21. X. Zhang, G. Zhou, J. Zhou, H. Zhou, P. Kong, Z. Yu, J. Zhan, Bull. Mater. Sci. 40, 983–990 (2017)

    Article  CAS  Google Scholar 

  22. Y.-Y. Liang, L.-J. Qiao, Z.-H. Liu, J. Mater. Res. 31, 195–201 (2016)

    Article  CAS  Google Scholar 

  23. G. Jianhua, S. Limei, L. Ximai, G. Teng, L. Teng, H.U. Xiaoyun, Z. Dekai, J. Rare Earths 29, 335 (2011)

    Article  Google Scholar 

  24. W. Di, R.A.S. Ferreira, M.-G. Willinger, X. Ren, N. Pinna, J. Phys. Chem. C 114, 6290–6297 (2010)

    Article  CAS  Google Scholar 

  25. M. Okumura, M. Tamatani, A.K. Albessard, N. Matsuda, Jpn. J. Appl. Phys. 36, 6411 (1997)

    Article  CAS  Google Scholar 

  26. C. Yu, Z. Yang, J. Qiu, Z. Song, Z. Dacheng, J. Am. Chem. Soc. 11, 612–623 (2018)

    Google Scholar 

  27. W. Shi, Z. Li, L. Wang, S. Wu, G. Zhang, M. Meng, X. Ma, Opt. Commun. 406, 50–54 (2018)

    Article  CAS  Google Scholar 

  28. S. Nigam, Ch.S. Kamal, K. Ramachandra Rao, V. Sudarsan, R.K. Vatsa, J. Lumin. 178, 219–225 (2016)

    Article  CAS  Google Scholar 

  29. M. Pia˛tkowska, E. Tomaszewicz, J. Rare Earths 36, 635–641 (2018)

    Article  Google Scholar 

  30. A.D. Furasova, V. Ivanovski, A.V. Yakovlev, V.A. Milichko, V.V. Vinogradov, A.V. Vinogradov, Nanoscale 9, 13069–13078 (2017)

    Article  CAS  Google Scholar 

  31. S. Khosravi Gandomani, B. Khoshnevisan, R. Yousefi, J. Lumin. 203, 481–485 (2018)

    Article  Google Scholar 

  32. A. Ghorban Shiravizadeh, S.M. Elahi, S.A. Sebt, R. Yousefi, J. Appl. Phys. 123, 083102 (2018)

    Article  Google Scholar 

  33. S. Sugai, K. Murase, H. Kawamura, Solid State Commun. 23, 127–129 (1977)

    Article  CAS  Google Scholar 

  34. L.J. Brillson, E. Burstein, L. Muldawer, Phys. Rev. B 9, 1547 (1974)

    Article  CAS  Google Scholar 

  35. G. Faraci, S. Gibilisco, A.R. Pennisi, Phys. Rev. B 80, 193410 (2009)

    Article  Google Scholar 

  36. A. Ghorban Shiravizadeh, R. Yousefi, S.M. Elahi, S.A. Sebt, Phys. Chem. Chem. Phys. 19, 18089–18098 (2017)

    Article  Google Scholar 

  37. M. Cheraghizade, F. Jamali-Sheini, R. Yousefi, F. Niknia, M.R. Mahmoudian, M. Sookhakian, Mater. Chem. Phys. 195, 187–194 (2017)

    Article  CAS  Google Scholar 

  38. F. Jamali-Sheini, F. Niknia, M. Cheraghizade, R. Yousefi, M.R. Mahmoudian, ChemElectroChem. 4, 1478–1486 (2017)

    Article  CAS  Google Scholar 

  39. S. Ozaki, S. Adachi, J. Appl. Phys. 100, 113526 (2006)

    Article  Google Scholar 

  40. L. Hu, H. Wu, L. Du, H. Ge, X. Chen, N. Dai, Nanotechnology 22, 125202 (2011)

    Article  Google Scholar 

  41. K. Zheng, K. Ž ídek, M. Abdellah, J. Chen, P. Chábera, W. Zhang, M.J. Al-Marri, T. Pullerits, ACS Energy Lett. 1, 1154–1161 (2016)

    Article  CAS  Google Scholar 

  42. J. He, H. LindstrÓ§m, A. Hagfeldt, S.-E. Lindquist, J. Phys. Chem. B. 103, 8940–8943 (1999)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

R. Yousefi acknowledges the Islamic Azad University (I.A.U), Masjed-Soleiman Branch for its partial support in this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramin Yousefi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khosravi Ghandomani, S., Khoshnevisan, B. & Yousefi, R. The capability of SnTe QDs as QDSCs working in the visible–NIR region and the effects of Eu-doping on improvement of solar cell parameters. J Mater Sci: Mater Electron 29, 18989–18996 (2018). https://doi.org/10.1007/s10854-018-0023-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-0023-z

Navigation