Skip to main content
Log in

Zinc blende phase detection in ZnO thin films grown with low doping Mn concentration by double-beam pulsed laser deposition

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Manganese-doped zinc oxide thin films (ZnO:Mn) were grown on silicon and corning glass using double beam pulsed laser deposition. In this configuration, two synchronized pulsed-laser beams were employed to ablate independently ZnO and Mn targets. The presence of the zinc blende phase was investigated by means of X-ray diffraction, pulsed laser photoacoustic analysis and the calculation of the lattice parameter a. The crystallography plane (110) of the cubic zinc blende was found in all the films. Energy dispersive X-ray spectroscopy and different statistical analysis were employed to analyze the effect of the relative delay between plasma plumes on the average incorporation of Manganese. The minimum content of Mn—0.176 at%—was found for a relative delay of 10 µs, this result suggest that this delay is the inflection point to be considered in relation to a significant decrease in the incorporation of the dopant element. A significant positive Correlation analysis—r (4) = 0.98, p < 0.05—between the thickness and the average Mn incorporation was found, this means that as the percentage of manganese in the structure increases the thickness also increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. N. Matsunami, M. Itoh, M. Kato, S. Okayasu, M. Sataka, H. Kakiuchida, Growth of Mn-doped ZnO thin films by rf-sputter deposition and lattice relaxation by energetic ion impact. App. Surf. Sci. 350, 31–37 (2015)

    Article  CAS  Google Scholar 

  2. M. Yilmaz, Investigation of characteristics of ZnO:Ga nanocrystalline thin films with varying dopant content. Mat. Sci. Semicon. Proc. 40, 99–106 (2015)

    Article  CAS  Google Scholar 

  3. L. Martínez-Pérez, N. Muñoz-Aguirre, S. Muñoz-Aguirre, O. Zelaya-Angel, Nanometric structures of highly oriented zinc blende ZnO thin films. Mater. Lett. 139, 63–65 (2015)

    Article  Google Scholar 

  4. H. Aydin, H.M. El-Nasser, C. Aydin, AhmedA. Al-Ghamdi, F. Yakuphanoglu, Synthesis and characterization of nanostructured undoped and Sn-doped ZnO thin films via sol–gel approach. Appl. Surf. Sci. 350, 109–114 (2015)

    Article  CAS  Google Scholar 

  5. G. Kaur, A. Mitra, K.L. Yadav, Pulsed laser deposition Al-doped ZnO thin films for optical applications. Prog. Nat. Sci. 25, 12–21 (2015)

    Article  CAS  Google Scholar 

  6. C. Sánchez-Aké, R. Camacho, L. Moreno, Deposition and composition-control of Mn-doped ZnO thin films by combinatorial pulsed laser deposition using two delayed plasma plumes. J. Appl. Phys. 112, 044904 (2012)

    Article  Google Scholar 

  7. P.R. Willmott, Deposition of complex multielemental thin films. Prog.Surf. Sci. 76, 163–217 (2004)

    Article  CAS  Google Scholar 

  8. W. Seiler, E. Millon, J. Perriere, R. Benzerga, C. Boulmer-Leborge, Epitaxial growth of copper oxide films by reactive cross-beam pulsed-laser deposition. J. Cryst. Growth 311, 3352–3358 (2009)

    Article  CAS  Google Scholar 

  9. R.W. Eason, Pulsed Laser Deposition of Thin Films: Applications-Led Growth of Functional Materials (Wiley, Hoboken, 2007)

    Google Scholar 

  10. L. Escobar-Alarcón, J. Pérez-Álvarez, D. Solís-Casados, E. Camps, S. Romero, J. Jiménez-Becerril, Preparation of Co:TiO2 thin films by crossed-beam pulsed laser deposition. Appl. Phys. A. 110, 909–913 (2013)

    Article  Google Scholar 

  11. K.A. Sloyan, T.C. May-Smith, R.W. Eason, J.G. Lunney, The effect of relative plasma plume delay on the properties of complex oxide films grown by multi-laser, multi-target combinatorial pulsed laser deposition. Appl. Surf. Sci. 255, 9066–9070 (2009)

    Article  CAS  Google Scholar 

  12. T.C. May-Smith, K.A. Sloyan, R. Gazia, R.W. Eason, Stress engineering and optimization of thick garnet crystal films grown by pulsed laser deposition. Cryst. Growth Des. 11, 1098–1108 (2011)

    Article  CAS  Google Scholar 

  13. L. Camacho, C. Sanchéz-Aké, M. Bizarro, Double-beam pulsed laser deposition for the growth of Al-incorporated ZnO thin films. Appl. Surf. Sci. 302, 46–51 (2014)

    Article  Google Scholar 

  14. R.J. Guerreo, N. Takeuchi, First principles calculations of the ground-state properties and structural phase transformation in CdO. Phys. Rev. B 66, 205205 (2002)

    Article  Google Scholar 

  15. H. Morkoc, Ü Özgür, Zinc Oxide: Fundamentals, Materials and Device Technology (Wiley, Winheim, 2009)

    Book  Google Scholar 

  16. D. Maouche, F.S. Saoud, L. Louail, Dependence of structural properties of ZnO on high pressure. Mater. Chem. Phys. 106, 11–15 (2007)

    Article  CAS  Google Scholar 

  17. U. Özgür, I. Alivoy, C. Liu, A. Teke, M.A. Reshchikov, S. Dogan, V. Avrutin, S.J. Cho, H. Morkov, A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98, 041301 (2005)

    Article  Google Scholar 

  18. A.B.M. Ashrafi, A. Ueta, A. Avramescu, H. Kumano, I. Suemune, Growth and characterization of hypothetical zinc-blende ZnO films on GaAs (001) substrates with ZnS buffer layers. Appl. Phys. Lett. 76, 550 (2000)

    Article  CAS  Google Scholar 

  19. A. Rosales, R. Castañeda-Guzman, A. de Ita, C. Sánchez-Aké, S.J. Pérez-Ruíz, Detection of zinc blende phase by pulsed laser photoacoustic technique in ZnO thin films deposited via pulsed laser deposition. Mat. Sci. Semicon. Proc. 34, 93–98 (2015)

    Article  CAS  Google Scholar 

  20. O. Lupan, T. Pauporté, L. Chow, B. Viana, F. Pellé, L.K. Ono, B.R. Cuenya, H. Heinrich, Effects of annealing on properties of ZnO thin films prepared by electrochemical deposition in chloride medium. Appl. Surf. Sci. 256, 1895–1907 (2010)

    Article  CAS  Google Scholar 

  21. A.P. Pacheco, R.C. Guzmán, C.O. Montes de Oca, A.E. García, S.J. Pérez, Phase transition of TiO2 thin films detected by the pulsed laser photoacoustic technique. Appl. Phys. A 102, 699–704 (2011)

    Article  Google Scholar 

  22. E. Alvarez-Zauco, E.V. Basiuk, R. Castañeda-Guzmán, R.Y. Sato-Berru, J.M. Saniger-Blesa, M. Villagran-Muniz, J.G. Bañuelos, Phototrans. J.Nanosci. Nanotechnol. 7, 1414–1418 (2007)

    Article  CAS  Google Scholar 

  23. R.C. Guzmán, M.V. Muniz, J.M.S. Blesa, Photoacoustic phase transition of the ceramic BaTiO3. Appl. Phys. Lett. 73, 623 (1998)

    Article  Google Scholar 

  24. S. Kandpal, R.P.S. Kushwaha, Photoacoustic spectroscopy of thin films of As2S3, As2Se3 and GeSe2. J. Phys. 69, 481–484 (2007)

    CAS  Google Scholar 

  25. J. Zhang, R. Skomski, D.J. Sellmyer, Sample preparation and annealing effects on the ferromagnetism in Mn – doped ZnO. J. Appl. Phys. 97, 10D303 (2005)

    Article  Google Scholar 

  26. B. Babić-Stojić, D. Milivojević, J. Blanuša, V. Spasojević, N. Bibić, B. Simonović, D. Arandelovic, Ferromagnetic properties of the Zn?Mn?O system. J. Phys. Condens. Matter 20, 235217 (2008)

    Article  Google Scholar 

  27. S.A. Ahmed, Structural, optical, and magnetic properties of Mn-doped ZnO samples. Results. Phys. 7, 604–610 (2017)

    Article  Google Scholar 

  28. K.A. Sloyan, T.C. May-Smith, M.N. Zervas, R.W. Eason, Crystalline garnet Bragg reflectors for high power, high temperature, and integrated applications fabricated by multibeam laser deposition. Cryst. Growth Des. 101, 081117 (2012)

    Google Scholar 

  29. W. Cheng, J. Wang, M. Wang, Influence of doping concentration on the properties of ZnO:Mn thin films by sol–gel method. Vacuum 81, 894–898 (2007)

    Article  Google Scholar 

  30. S. Yang, Y. Zhang, Structural, optical and magnetic properties of Mn-doped ZnO thin films prepared by sol–gel method. J. Magn. Mater. 334, 52–58 (2013)

    Article  CAS  Google Scholar 

  31. J.G. Lu., Z.Z. Ye, Y.J. Zeng, L.P. Zhu, L. Wang, J. Yuan, B.H. Zhao, Q.L. Liang, Structural, optical, and electrical properties of (Zn,Al)O films over a wide range of compositions. J. Appl. Phys. 100, 073714 (2006)

    Article  Google Scholar 

  32. D. Chakraborti, J. Narayan, J.T. Prater, Room temperature ferromagnetism in Zn1−x Cux O thin films. Appl. Phys. Lett. 90, 062504 (2007)

    Article  Google Scholar 

  33. S. Ramachandran, J. Nayaran, J.T. Prater, Effect of oxygen annealing on Mn doped ZnO diluted magnetic semiconductors. Appl. Phys. Lett. 88, 242503 (2006)

    Article  Google Scholar 

  34. Y.Z. Peng, T. Liew, W.D. Song, C.W. An, K.L. Teo, T.C. Chong, Structural and optical properties of Co-doped ZnO thin films. J. Supercond. Novel Magn. 18(1), 97–103 (2005)

    Article  CAS  Google Scholar 

  35. R. Mimouni, O. Kamoun, A. Yumak, A. Mhamdi, K. boubaker, P. Petkova, M. Amlouk, Effect of Mn content on structural, optical, opto-thermal and electrical properties of ZnO:Mn sprayed thin films compounds. J. Alloy. Compd. 645, 100–111 (2015)

    Article  CAS  Google Scholar 

  36. O. Zelaya-angel, H. Yee-madeira, R. Lozada-morales, theorical basis for zincblende to wurtziteCdS-phase transition. Phase Transit. 70(1), 11–17 (2006)

    Article  Google Scholar 

  37. J.L. Pineda Flores, R. Castañeda-Guzmán, M. Villagrán Muniz, A. Huanosta, Tera, Ferro-paraelectric transitions in relaxor materials studied by a photoacoustic technique. Apply. Phys. Lett. 79(8), 1166–1168 (2001)

    Article  Google Scholar 

  38. R. Castañeda-Guzmán, A. Huanosta-Tera, L. Baños, M. Fernández-Zamora, S.J. Pérez-Ruiz, Pulsed photoacoustic: a reliable technique to investigate diffuse phase transitions and associated phenomena in ferroelectrics. Ferroelectrics. 386, 50–61 (2009)

    Article  Google Scholar 

  39. C.H. Bates, W.B. White, R. Roy, New high-pressure polymorph of zinc oxide. Science 137, 993–997 (1962)

    Article  CAS  Google Scholar 

  40. P.S. Solokov, A.N. Baranov, Z.V. Dobrokhotov, V.L. Solozhenko, Synthesis and thermal stability of cubic ZnO in the salt nanocomposites. Russ. Chem. Bull. 59, 325–328 (2010)

    Article  Google Scholar 

  41. K.I. Mohammed, F.M. Jasim, M.I. Azawe, Influence of the thickness and crystalline structure on thermal and optical properties of ZnO thin films. Curr. Appl. Phys. 14, 1318–1324 (2014)

    Article  Google Scholar 

  42. X. Mei, H.Z. Li, L. Dong-Ping, Y. Nai-Sen, Effect of Mn doping on the optical, structural and photoluminescence properties of nanostructured ZnO thin film synthesized by sol–gel technique. Superlatticemicrost. 74, 234–241 (2014)

    Google Scholar 

  43. G. Kaur, A. Mitra, K.L. Yadav, Pulsed laser deposited Al-doped ZnO thin films for optical applications. Prog. Nat. Sci. 25, 12–21 (2015)

    Article  CAS  Google Scholar 

  44. S. Chattopadhyay, S. Dutta, A. Banerjee, D. Jana, S. Bandyopadhyay, S. Chattopadhyay, A. Sarkar, Synthesis and characterization of single-phase Mn-doped ZnO. Physica B. 404, 1509–1514 (2009)

    Article  CAS  Google Scholar 

  45. S. Dutta, S. Chattopadhyay, D. Jana, A. Banerjee, S. Manik, S.K. Pradhan, M. Sutradhar, A. Sarkar, J. Appl. Phys. 100, 114328 (2006)

    Article  Google Scholar 

  46. G. Vijayaprasath, R. Murugan, S. Palanisamy, N.M. Prabhu, T. Mahalingam, Y. Hayakawa, G. Ravi, Role of nickel doping on structural, optical, magnetic properties an antibacterial activity of ZnO nanoparticles. Mater. Res. Bull. 76, 48–61 (2016)

    Article  CAS  Google Scholar 

  47. X.L. Wang, C.Y. Luan, Q. Shao, A. Pruna, C.W. Leung, R. Lortz, J.A. Zapien, A. Ruotolo, Appl. Phys. Lett. 102, 102112 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Council of Science and Technology (Conacyt) (Grant No. 329037/291053).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Rosales-Córdova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosales-Córdova, A., Castañeda-Guzmán, R. & Sanchez-Aké, C. Zinc blende phase detection in ZnO thin films grown with low doping Mn concentration by double-beam pulsed laser deposition. J Mater Sci: Mater Electron 29, 18971–18977 (2018). https://doi.org/10.1007/s10854-018-0020-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-0020-2

Navigation