Skip to main content

Advertisement

Log in

Extended visible light harvesting and boosted charge carrier dynamics in heterostructured zirconate–FeS2 photocatalysts for efficient solar water splitting

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Limited visible light absorption, slow charge transference, and high recombination are some of the main problems associated with low efficiency in photocatalytic processes. For these reasons, in the present work, we develope novel zirconate–FeS2 heterostructured photocatalysts with improved visible light harvesting, effective charge separation and high photocatalytic water splitting performance. Herein, alkali and alkaline earth metal zirconates are prepared by a solid state reaction and coupled to FeS2 through a simple wet impregnation method. The incorporation of FeS2 particles induces visible light absorption and electron injection in zirconates, while the appropriate coupling of the semiconductors in the heterostructure allows an enhanced charge separation and suppression of the recombination. The obtained heterostructures exhibit high and stable photocatalytic activity for water splitting under visible light, showing competitive efficiencies among other reported materials. The highest hydrogen evolution rate (4490 µmol g−1 h−1) is shown for BaZrO3–FeS2 and corresponds to more than 20 times the activity of the bare BaZrO3. In summary, this work proposes novel visible light active heterostructures for efficient visible light photocatalytic water splitting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. S.Y. Tee, K.Y. Win, W.S. Teo, L.D. Koh, S. Liu, C.P. Teng, M.Y. Han, Recent progress in energy-driven water splitting. Adv. Sci. 4, 1600337 (2017)

    Article  Google Scholar 

  2. M. Ge, Q. Li, C. Cao, J. Huang, S. Li, S. Zhang, Z. Chen, K. Zhang, S.S. Al-Deyab, Y. Lai, Water splitting: one-dimensional TiO2-nanotube photocatalysts for solar water splitting. Adv. Sci. 4, 1600152 (2017)

    Article  Google Scholar 

  3. M. Li, Y. Chen, W. Li, X. Li, H. Tian, X. Wei, Z. Ren, G. Han, Ultrathin anatase TiO2 nanosheets for high-performance photocatalytic hydrogen production. Small 13, 1604115 (2017)

    Article  Google Scholar 

  4. Q. Wang, Y. Shi, Q. Ma, D. Gao, J. Zhong, J. Li, F. Wang, Y. He, R. Wang, A flower-like TiO2 with photocatalytic hydrogen evolution activity modified by Zn(II) porphyrin photocatalysts. J. Mater. Sci. Mater. Electron. 28, 2123–2127 (2016)

    Article  Google Scholar 

  5. H. He, J. Lin, W. Fu, X. Wang, H. Wang, Q. Zeng, Q. Gu, Y. Li, C. Yan, B.K. Tay, C. Xue, X. Hu, S.T. Pantelides, W. Zhou, Z. Liu, MoS2/TiO2 edge-on heterostructure for efficient photocatalytic hydrogen evolution. Adv. Energy Mater. 6, 1600464 (2016)

    Article  Google Scholar 

  6. A. Samokhvalov, Hydrogen by photocatalysis with nitrogen codoped titanium dioxide. Renew. Sustain. Energy Rev. 72, 981–1000 (2017)

    Article  CAS  Google Scholar 

  7. R.A. Rather, S. Singh, B. Pal, A Cu+1/Cu0-TiO2 mesoporous nanocomposite exhibits improved H2 production from H2O under direct solar irradiation. J. Catal. 346, 1–9 (2017)

    Article  CAS  Google Scholar 

  8. A.L. Linsebigler, G. Lu, J.T. Yates, Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem. Rev. 95, 735–758 (1995)

    Article  CAS  Google Scholar 

  9. M. Ni, M.K.H. Leung, D.Y.C. Leung, K. Sumathy, A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew Sustain. Energy Rev. 11, 401–425 (2007)

    Article  CAS  Google Scholar 

  10. T. Sreethawong, S. Yoshikawa, Enhanced photocatalytic hydrogen evolution over Pt supported on mesoporous TiO2 prepared by single-step sol-gel process with surfactant template. Int. J. Hydrogen Energy 31, 786–796 (2006)

    Article  CAS  Google Scholar 

  11. Y. Inoue, Photocatalytic water splitting by RuO2-loaded metal oxides and nitrides with d0- and d10-related electronic configurations. Energy Environ. Sci. 2, 364–386 (2009)

    Article  CAS  Google Scholar 

  12. T. Jafari, E. Moharreri, A.S. Amin, R. Miao, W. Song, S.L. Suib, Photocatalytic water splitting—the untamed dream: a review of recent advances. Molecules 21(7), 900 (2016)

    Article  Google Scholar 

  13. A.M. Huerta-Flores, L.M. Torres-Martínez, E. Moctezuma, Overall photocatalytic water splitting on Na2ZrxTi6−xO13 (x = 0,1) nanobelts modified with metal oxide nanoparticles as cocatalysts. Int. J. Hydrogen Energy 42, 14547–14559 (2017)

    Article  CAS  Google Scholar 

  14. S. Tanigawa, T. Takashima, H. Irie, Enhanced visible-light-sensitive two-step overall water-splitting based on band structure controls of titanium dioxide and strontium titanate. J. Mater. Sci. Chem. Eng. 5, 129–141 (2017)

    CAS  Google Scholar 

  15. A. Alzahrani, D. Barbash, A. Samokhvalov, “One-pot” synthesis and photocatalytic hydrogen generation with nanocrystalline Ag(0)/CaTiO3 and in situ mechanistic studies. J. Phys. Chem. C 120, 19970–19979 (2016)

    Article  CAS  Google Scholar 

  16. A.M. Huerta-Flores, J. Chen, L.M. Torres-Martínez, A. Ito, E. Moctezuma, T. Goto, Laser assisted chemical vapor deposition of nanostructured NaTaO3 and SrTiO3 thin films for efficient photocatalytic hydrogen evolution. Fuel 197, 174–185 (2017)

    Article  CAS  Google Scholar 

  17. M. Matsuoka, Y. Ide, M. Ogawa, Temperature-dependent photocatalytic hydrogen evolution activity from water on a dye-sensitized layered titanate. Phys. Chem. Chem. Phys. 16, 3520–3522 (2014)

    Article  CAS  Google Scholar 

  18. T. Grewe, H. Tüysüz, Amorphous and crystalline sodium tantalate composites for photocatalytic water splitting. Appl. Mater. Interfaces 7, 23153–23162 (2015)

    Article  CAS  Google Scholar 

  19. K. Saito, K. Koga, A. Kudo, amorphous and crystalline sodium tantalate composites for photocatalytic water splitting. Dalton Trans. 40, 3909–3913 (2011)

    Article  CAS  Google Scholar 

  20. Y. Miseki, A. Kudo, Water splitting over new niobate photocatalysts with tungsten-bronze-type structure and effect of transition metal-doping. Chem. Sust. Chem. 4, 245–251 (2011)

    CAS  Google Scholar 

  21. K. Nakagawa, T. Jia, W. Zheng, S.M. Fairclough, M. Katoh, S. Sugiyama, S.C.E. Tsang, Enhanced photocatalytic hydrogen evolution from water by niobate single molecular sheets and ensembles. Chem. Commun. 50, 13702–13705 (2014)

    Article  CAS  Google Scholar 

  22. A.M. Huerta-Flores, L.M. Torres-Martínez, D. Sánchez-Martínez, M.E. Zarazúa-Morín, SrZrO3 powders: alternative synthesis, characterization and application as photocatalysts for hydrogen evolution from water splitting. Fuel 158, 66–71 (2015)

    Article  CAS  Google Scholar 

  23. A.M. Huerta-Flores, L.M. Torres-Martínez, E. Moctezuma, O. Ceballos-Sánchez, Enhanced photocatalytic activity for hydrogen evolution of SrZrO3 modified with earth abundant metal oxides (MO, M = Cu, Ni, Fe, Co). Fuel 181, 670–679 (2016)

    Article  CAS  Google Scholar 

  24. Z. Khan, M. Qureshi, Tantalum doped BaZrO3 for efficient photocatalytic hydrogen generation by water splitting. Catal. Commun. 28, 82–85 (2012)

    Article  CAS  Google Scholar 

  25. P. Wu, J. Shi, Z. Zhou, W. Tang, L. Guo, CaTaO2N-CaZrO3 solid solution: Band-structure engineering and visible-light-driven photocatalytic hydrogen production. Int. J. Hydrogen Energy 37, 13704–13710 (2012)

    Article  CAS  Google Scholar 

  26. N. Tiwari, R.K. Kuraria, S.R. Kuraria, R.K. Tamrakar, Mechanoluminescence, photoluminescence and thermoluminiscence studies of SrZrO3:Ce phosphor. J. Radiat. Res. Appl. Sci. 8, 68–76 (2015)

    Article  CAS  Google Scholar 

  27. L.S. Cavalcante, J.C. Sczancoski, J.W.M. Espinosa, V.R. Mastelaro, P.S. Pizani, F.S. De Vicente, M.S. Li, J.A. Varela, E. Longo, Intense blue and Green photoluminescence emissions at room temperature in barium zirconate powders. J. Alloy. Compd. 471, 253–258 (2009)

    Article  CAS  Google Scholar 

  28. E.C.C. De Souza, R. Muccillo, Properties and applications of perovskite proton conductors. Mater. Res. 13, 385–394 (2010)

    Article  Google Scholar 

  29. J. Zhu, H. Li, L. Zhong, P. Xiao, X. Xu, X. Yang, Z. Zhao, J. Li, Perovskite oxides: preparation, characterizations, and applications in heterogeneous catalysis. ACS Catal 4, 2917–2940 (2014)

    Article  CAS  Google Scholar 

  30. F. Dogan, H. Lin, M. Guilloux-Viry, O. Peña, Focus on properties and applications of perovskites. Adv. Mater. 16, 020301 (2015)

    Google Scholar 

  31. G. Zhang, G. Liu, L. Wang, J.T.S. Irvine, Inorganic perovskite photocatalysts for solar energy utilization. Chem. Soc. Rev. 45, 5951–5984 (2016)

    Article  CAS  Google Scholar 

  32. L.S. Cavalcante, J.C. Sczancoski, J.W.M. Espinosa, V.R. Mastelaro, A. Michalowicz, P.S. Pizani, F.S. De Vicente, M.S. Li, J.A. Varela, E. Longo, Intense blue and green photoluminescence emissions at room temperature in barium zirconate powders. J. Alloys Compd. 471, 253–258 (2009)

    Article  CAS  Google Scholar 

  33. A.M. Huerta-Flores, L.M. Torres-Martínez, E. Moctezuma, J.E. Carrera-Crespo, Novel SrZrO3-Sb2O3 heterostructure with enhanced photocatalytic activity: band engineering and charge transference mechanism. J. Photochem. Photobiol. A 356, 166–176 (2018)

    Article  CAS  Google Scholar 

  34. L.A. Alfonso-Herrera, A.M. Huerta-Flores, L.M. Torres-Martínez, J.M. Rivera-Villanueva, D.J. Ramírez-Herrera, Hybrid SrZrO3-MOF heterostructure: surface assembly and photocatalytic performance for hydrogen evolution and degradation of indigo carmine dye. J. Mater. Sci. (2018). https://doi.org/10.1007/s10854-018-9096-y

    Article  Google Scholar 

  35. Y. Wang, Q. Wang, X. Zhan, F. Wang, M. Safdar, J. He, Visible light driven type II heterostructures and their enhanced photocatalysis properties: a review. Nanoscale 5, 8326–8339 (2013)

    Article  CAS  Google Scholar 

  36. P. Prabukanthan, R.J. Soukup, N.J. Ianno, A. Sarkar, C.A. Kamler, E.L. Extrom, J. Olejnicek, S.A. Darveau. Chemical bath deposition (CBD) of iron sulfide thin films for photovoltaic applications, crystallographic and optical properties, Proceedings of the 35th Photovoltaics Specialists Conference, Institute of Electrical and Electronics Engineeris (IEEE), 002965–002969 (2010)

  37. P. Prabukanthan, R.J. Soukup, N.J. Ianno, C.A. Kamler, D.G. Sekora, Formation of pyrite (FeS2) thin films by thermal sulfurization magnetron sputtered iron. J. Vac. Sci. Technol. A 29(1–5), 011001 (2011)

    Google Scholar 

  38. A.M. Huerta-Flores, L.M. Torres-Martínez, E. Moctezuma, A.P. Singh, B. Wickman, Green synthesis of earth-abundant metal sulfides (FeS2, CuS, and NiS2) and their use as visible-light active photocatalysts for H2 generation and dye removal. J. Mater. Sci. (2018). https://doi.org/10.1007/s10854-018-9259-x

    Article  Google Scholar 

  39. P. Prabukanthan, S. Thamaraiselvi, G. Harichandran, Structural, morphological, electrocatalytic activity and photocurrent properties of electrochemically deposited FeS2 thin films. J. Mater. Sci. 29, 11951–11963 (2018)

    CAS  Google Scholar 

  40. M. Wang, H. Qin, Y. Fang, J. Liu, L. Meng, FeS2-sensitized ZnO/ZnS nanorod arrays for the photoanodes of quantum-dot-sensitized solar cells. RSC Adv. 5, 105324–105328 (2015)

    Article  CAS  Google Scholar 

  41. T.R. Kuo, H.J. Liao, Y.T. Chen, C.Y. Wei, C.C. Chang, Y.C. Chen, Y.H. Chang, J.C. Lin, Y.C. Lee, C.Y. Wen, S.S. Li, K.H. Lin, D.Y. Wang, Extended visible to near-infrared harvesting of earth-abundant FeS2-TiO2 heterostructures for highly active photocatalytic hydrogen evolution. Green Chem. 20, 1640–1647 (2018)

    Article  CAS  Google Scholar 

  42. Y. Zhong, J. Liu, Z. Lu, H. Xia, Hierarchical FeS2 nanosheet@Fe2O3 nanosphere heterostructure as promising electrode material for supercapacitors. Mater. Lett. 166, 223–226 (2016)

    Article  CAS  Google Scholar 

  43. M. Gong, Q. Liu, R. Goul, D. Ewing, M. Casper, A. Stramel, A. Elliot, J.Z. Wu, Printable nanocomposite FeS2-PbS nanocrystals/graphene heterojunction photodetectors for broadband photodetection. ACS Appl. Mater. Interfaces 9(33), 27801–27808 (2017)

    Article  CAS  Google Scholar 

  44. Q. Tian, L. Zhang, J. Liu, N. Li, Q. Ma, J. Zhou, Y. Sun, Synthesis of MoS2/SrZrO3 heterostructures and their photocatalytic H2 evolution under UV irradiation. RSC Adv. 5, 734–739 (2015)

    Article  CAS  Google Scholar 

  45. L.A. Alfonso-Herrera, A.M. Huerta-Flores, L.M. Torres-Martínez, J.M. Rivera-Villanueva, D.J. Ramírez-Herrrera, Hybrid SrZrO3-MOF heterostructure: surface assembly and photocatalytic performance for hydrogen evolution and degradation of indigo carmine dye. J. Mater. Sci. Mater. Electron 29(12), 10395–10410 (2018)

    Article  CAS  Google Scholar 

  46. J. Meng, X. Fu, K. Du, X. Chen, Q. Lin, X. Wei, J. Li, Z. Zhang, BaZrO3 hollow nanostructure with Fe (III) doping for photocatalytic hydrogen evolution under visible light. Int. J. Hydrogen Energy 43, 9224–9232 (2018)

    Article  CAS  Google Scholar 

  47. G.C. Mather, C. Dussarrat, J. Etourneau, A.R. West, A review of cation-ordered rock salt superstructure oxides. J. Mater. Chem. 10, 2219–2230 (2000)

    Article  CAS  Google Scholar 

  48. I. Rodionov, A. ZverevaI, Photocatalytic activity of layered perovskite-like oxides in practically valuable chemical reactions. Russ. Chem. Rev. 85, 248–279 (2016)

    Article  CAS  Google Scholar 

  49. Q. Wang, J.H. Sohn, S.Y. Park, J.S. Choi, J.Y. Lee, J.S. Chung, Preparation and catalytic activity of K4Zr5O12 for the oxidation of soot from vehicle engine emissions. J. Ind. Eng. Chem. 16, 68–73 (2010)

    Article  CAS  Google Scholar 

  50. Y. Yang, Y. Sun, Y. Jiang, Structure and photocatalytic property of perovskite and perovskite-related compounds. Mater. Chem. Phys. 96, 234–239 (2006)

    Article  CAS  Google Scholar 

  51. T.J. Bastow, P.J. Dirken, M.E. Smith, Factors controlling the 17O NMR chemical shift in ionic mixed metal oxides. J. Phys. Chem. 100, 18539–18545 (1996)

    Article  CAS  Google Scholar 

  52. R.I. Eglitis, Ab initio calculations of the atomic and electronic structure of BaZrO3 (111) surfaces. Solid State Ionics 230, 43–47 (2013)

    Article  CAS  Google Scholar 

  53. P. Stoch, L.J. Szczerba, D. Madej, Z. Pedzich, Crystal structure and ab initio calculations of CaZrO3. J. Eur. Ceram. Soc. 32, 665–670 (2012)

    Article  CAS  Google Scholar 

  54. G. Celik, S. Cabuk, First-principles study of electronic structure and optical properties of Sr(Ti,Zr)O3. Cent. Eur. J. Phys. 11, 387–393 (2013)

    CAS  Google Scholar 

  55. Z. Jiao, T. Chen, J. Xiong, T. Wang, G. Lu, J. Ye, Y. Bi, Visible-light-driven photoelectrochemical and photocatalytic performances of Cr-doped SrTiO3/TiO2 heterostructured nanotube arrays. Sci Rep 3, 2720 (2013)

    Article  Google Scholar 

  56. V.M. Longo, L.S. Cavalcante, M.G.S. Costa, M.L. Moreira, A.T. De Figueiredo, J. Andrés, J. Varela, E. Longo, First principles calculations on the origin of violet-blue and green light photoluminescence emission in SrZrO3 and SrTiO3 perovskites. Theor. Chem. Acc. 124, 385–394 (2009)

    Article  CAS  Google Scholar 

  57. M. Wiegel, M.H.J. Emond, E.R. Stobbe, G. Blasse, Luminescence of alkali tantalates and niobates. J. Phys. Chem. Solids 55, 773–778 (1994)

    Article  CAS  Google Scholar 

  58. M. Wiegel, M. Hamoumi, G. Blasse, Luminescence and non linear optical properties of perovskite-like niobates and titanates. Mater. Chem. Phys. 36, 289–293 (1994)

    Article  CAS  Google Scholar 

  59. B. Liu, L.M. Liu, X.F. Lang, H.Y. Wang, X.W. Lou, E.S. Aydil, Doping high-surface-area mesoporous TiO2 microspheres with carbonate for visible light hydrogen production. Energy Environ. Sci. 7, 2592–2597 (2014)

    Article  CAS  Google Scholar 

  60. G. Tan, R. Xu, Z. Xing, Y. Yuan, J. Lu, J. Wen, C. Liu, L. Ma, C. Zhan, Q. Liu, T. Wu, Z. Jian, R. Shahbazian-Yassar, Y. Ren, D.J. Miller, L.A. Curtiss, X. Ji, K. Amine, Burning lithium in CS2 for high-performing compact Li2S–graphene nanocapsules for Li–S batteries. Nature Energy 2, 17090 (2017)

    Article  CAS  Google Scholar 

  61. X. Wang, J. Xie, C. Min-Li, Architecting smart “umbrella” Bi2S3/rGO-modified TiO2 nanorod array structures at the nanoscale for efficient photoelectrocatalysis under visible light. J. Mater. Chem. A 3, 1235–1242 (2015)

    Article  CAS  Google Scholar 

  62. M. Qamar, Q. Drmosh, M.I. Ahmed, M. Qamaruddin, Z.H. Yamani, Enhanced photoelectrochemical and photocatalytic activity of WO3-surface modified TiO2 thin film. Nanoscale Res. Lett. 10, 54 (2015)

    Article  Google Scholar 

  63. X. Gao, X. Liu, Z. Zhu, X. Wang, Z. Xie, Enhanced photoelectrochemical and photocatalytic behaviors of MFe2O4 (M = Ni, Co, Zn and Sr) modified TiO2 nanorod arrays. Sci. Rep. 6, 30543 (2016)

    Article  CAS  Google Scholar 

  64. H. Shen, Y. Lu, Y. Wang, Z. Pan, G. Cao, X. Yan, G. Fang, Low temperature hydrothermal synthesis of SrTiO3 nanoparticles without alkali and their effective photocatalytic activity. J. Adv. Ceram. 5, 298–307 (2016)

    Article  CAS  Google Scholar 

  65. H. Zhang, X. Lv, Y. Li, Y. Wang, J. Li, P25-Graphene composite as a high performance photocatalyst. ACS Nano 4(1), 380–386 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank CONACYT (CB-256795-2016, CB-2014-237049, INFRA-2015-252753, PN-2015-01-487, NRF-2016-278729, and PhD Scholarship 386267), SEP (PROFOCIE-2014-19-MSU0011T-1, PRODEP-103.5/15/14156), UANL (PAICYT 2018 IT633-18), FIC-UANL (PAIFIC 2015-5) and the Swedish Research Council Formas. J.M. Mora-Hernandez thanks to Cátedras CONACYT ID7708.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leticia M. Torres-Martínez.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 14 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huerta-Flores, A.M., Mora-Hernández, J.M., Torres-Martínez, L.M. et al. Extended visible light harvesting and boosted charge carrier dynamics in heterostructured zirconate–FeS2 photocatalysts for efficient solar water splitting. J Mater Sci: Mater Electron 29, 18957–18970 (2018). https://doi.org/10.1007/s10854-018-0019-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-0019-8

Navigation