Excellent dielectric performance and nonlinear electrical behaviors of Zr-doped CaCu3Ti4O12 thin films

  • Dong Xu
  • Yajun Zhu
  • Bin Zhang
  • Xianning Yue
  • Lei Jiao
  • Juan Song
  • Sujuan Zhong
  • Jia Ma
  • Li Bao
  • Lei Zhang


The dielectric and nonlinear current–voltage properties of CaCu3Ti4−xZr x O12 (x = 0, 0.05, 0.1, 0.15 and 0.2) thin films prepared by the modified sol–gel method and annealed at 750 °C for 1 h were systematically studied. Zr doping resulted in a significant reduction in the mean grain size from 177.4 to 42.9 nm. The dielectric properties of the thin films increased significantly with the increase of Zr content from x = 0 to 0.2, indicating the importance of microstructure in controlling the dielectric properties of CaCu3Ti4−xZr x O12 thin films. A highly frequency-independent giant dielectric permittivity from 102 to 106 Hz was successfully achieved in CaCu3Ti3.8Zr0.2O12 thin film, which possessed a very high dielectric permittivity value of 7591 and a very low tanδ value of 0.023 at 1 kHz. The results indicated that reduction in the mean grain size affected the number of polarized ions per unit volume n0 (to improve ε′) and the number of grain boundaries (to reduce tanδ). CaCu3Ti3.75Zr0.15O12 thin film showed the highest nonlinear coefficient (5.8) and lowest leakage current (131 μA). In addition, the relaxation mechanism based on the internal barrier layer capacitance model and the back-to-back dual Schottky barrier model were used to explain the dielectric properties and the nonlinear electrical behaviors of the samples.



This work was financially supported by National Natural Science Foundation of China (Grant No. 51572113).


  1. 1.
    M.A. Subramanian, D. Li, N. Duan, B.A. Reisner, A.W. Sleight, J. Solid State Chem. 151, 323 (2000)CrossRefGoogle Scholar
  2. 2.
    A.P. Ramirez, M.A. Subramanian, M. Gardel, G. Blumberg, D. Li, T. Vogt, S.M. Shapiro, Solid State Commun. 115, 217 (2000)CrossRefGoogle Scholar
  3. 3.
    M.A. Subramanian, A.W. Sleight, Solid State Sci. 33, 347 (2002)CrossRefGoogle Scholar
  4. 4.
    S.M. Moussa, B.J. Kennedy, Mater. Res. Bull. 36, 2525 (2001)CrossRefGoogle Scholar
  5. 5.
    C.C. Homes, T. Vogt, S.M. Shapiro, S. Wakimoto, A.P. Ramirez, Science 293, 673 (2001)CrossRefGoogle Scholar
  6. 6.
    D.C. Sinclair, T.B. Adams, F.D. Morrison, A.R. West, Appl. Phys. Lett. 80, 2153 (2002)CrossRefGoogle Scholar
  7. 7.
    W.X. Yuan, S.K. Hark, H.Y. Xu, W.N. Mei, Solid State Sci. 14, 35 (2012)CrossRefGoogle Scholar
  8. 8.
    L. Singh, U.S. Rai, K. Mandal, B.C. Sin, S.I. Lee, Y. Lee, Ceram. Int. 40, 10073 (2014)CrossRefGoogle Scholar
  9. 9.
    L. Singh, B.C. Sin, I.W. Kim, K.D. Mandal, H. Chung, Y. Lee, J. Am. Ceram. Soc. 99, 27 (2016)CrossRefGoogle Scholar
  10. 10.
    L. Singh, I.W. Kim, W.S. Woo, B.C. Sin, H.I. Lee, Y. Lee, Solid State Sci. 43, 35 (2015)CrossRefGoogle Scholar
  11. 11.
    R. Parra, R. Savu, L.A. Ramajo, M.A. Ponce, J.A. Varela, M.S. Castro, P.R. Bueno, E. Joanni, J. Solid State Chem. 183, 1209 (2010)CrossRefGoogle Scholar
  12. 12.
    K. He, Y. Luo, R. Yu, J. Qi, X. Sun, Y. Yang, H. Xu, J. Ma, D. Xu, Mater. Res. Bull. 69, 98 (2015)CrossRefGoogle Scholar
  13. 13.
    S. Wu, P. Liu, Y. Lai, W. Guan, Z. Huang, J. Han, Y. Xiang, W. Yi, Y. Zeng, J. Mater. Sci. Mater. Electron. 27, 10336 (2016)CrossRefGoogle Scholar
  14. 14.
    S.Y. Chung, I.D. Kim, S.J. Kang, Nature Mater. 3, 774 (2004)CrossRefGoogle Scholar
  15. 15.
    D. Xu, L.Y. Shi, Z.H. Wu, Q.D. Zhong, X.X. Wu, J. Eur. Ceram. Soc. 29, 1789 (2009)CrossRefGoogle Scholar
  16. 16.
    D. Xu, D.M. Tang, L. Jiao, H.M. Yuan, G.P. Zhao, X.N. Cheng, J. Cent. S. Univ. 19, 2094 (2012)CrossRefGoogle Scholar
  17. 17.
    V.P.B. Marques, A. Ries, A.Z. Simões, M.A. Ramírez, J.A. Varela, E. Longo, Ceram. Int. 33, 1187 (2007)CrossRefGoogle Scholar
  18. 18.
    L.T. Mei, H. Hsing-I, T.T. Fang, J. Am. Ceram. Soc. 91, 3735 (2010)CrossRefGoogle Scholar
  19. 19.
    T.B. Adams, D.C. Sinclair, A.R. West, Phys. Rev. B 73, 9 (2006)Google Scholar
  20. 20.
    T. Ning, C. Chen, Y. Zhou, H. Lu, D. Zhang, H. Ming, G. Yang, Appl. Phys. A 94, 567 (2009)CrossRefGoogle Scholar
  21. 21.
    M. Xiao, Q. Hu, J. Alloys Compd. 652, 70 (2015)CrossRefGoogle Scholar
  22. 22.
    D. Xu, K. He, R. Yu, X. Sun, Y. Yang, H. Xu, H. Yuan, M. Jing, Mater. Chem. Phys. 153, 229 (2015)CrossRefGoogle Scholar
  23. 23.
    G. Zang, J. Zhang, P. Zheng, J. Wang, C. Wang, J. Phys. D 38, 1824 (2005)CrossRefGoogle Scholar
  24. 24.
    D. Xu, K. He, R. Yu, L. Jiao, H. Yuan, X. Sun, G. Zhao, H. Xu, X. Cheng, J. Alloys Compd. 592, 220 (2014)CrossRefGoogle Scholar
  25. 25.
    S.H. Lee, T.H. Jeoung, S.P. Nam, I.H. Im, J. Ceram. Process. Res. 17, 139 (2016)Google Scholar
  26. 26.
    X. Zhao, L. Huang, S. Namuangruk, H. Hu, X. Hu, L. Shi, D. Zhang, Catal. Sci. Technol. 6, 5543 (2016)CrossRefGoogle Scholar
  27. 27.
    H. Hu, K. Zha, H. Li, L. Shi, D. Zhang, Appl. Surf. Sci. 387, 921 (2016)CrossRefGoogle Scholar
  28. 28.
    S. Cai, D. Zhang, L. Zhang, L. Huang, H. Li, R. Gao, L. Shi, J. Zhang, Catal. Sci. Technol. 4, 93 (2013)CrossRefGoogle Scholar
  29. 29.
    E.A. Patterson, S. Kwon, C.C. Huang, D.P. Cann, Appl. Phys. Lett. 87, 323 (2005)Google Scholar
  30. 30.
    S. Kwon, C.C. Huang, E.A. Patterson, D.P. Cann, E.F. Alberta, S. Kwon, W.S. Hackenberger, D.P. Cann, Mater. Lett. 62, 633 (2008)CrossRefGoogle Scholar
  31. 31.
    S. Jesurani, S. Kanagesan, M. Hashim, I. Ismail, I.R. Ibrahim, Adv. Mater. Sci. Eng. 2014, 2 (2014)CrossRefGoogle Scholar
  32. 32.
    L. Zhang, Y. Wu, X. Guo, Z. Wang, Y. Zou, J. Mater. Sci. Mater. Electron. 23, 865 (2012)CrossRefGoogle Scholar
  33. 33.
    C.H. Zhang, K. Zhang, H.X. Xu, S. Qi, Y.T. Yang, R.H. Yu. D. Hong, X.N. Xu, T. Cheng, Nonferrous Metal. Soc. 22, s127 (2012)CrossRefGoogle Scholar
  34. 34.
    D. Xu, K. He, B.H. Chen, C.M. Xu, S.Y. Mu, L. Jiao, X.J. Sun, Prog. Nat. Sci.-Mater. 25, 399 (2015)CrossRefGoogle Scholar
  35. 35.
    S. Guillemet-Fritsch, T. Lebey, M. Boulos, B. Durand, J. Eur. Ceram. Soc. 26, 1245 (2006)CrossRefGoogle Scholar
  36. 36.
    J. Boonlakhorn, P. Kidkhunthod, P. Thongbai, S. Maensiri, Ceram. Int. 42, 8467 (2016)CrossRefGoogle Scholar
  37. 37.
    J. Jumpatam, A. Mooltang, B. Putasaeng, P. Kidkhunthod, N. Chanlek, P. Thongbai, S. Maensiri, Ceram. Int. 42, 16287 (2016)CrossRefGoogle Scholar
  38. 38.
    Y. Pu, Y. Hu, P. Wang, Z. Sun, X. Liu, Z. Dong, Ceram. Int. 41, S818 (2015)CrossRefGoogle Scholar
  39. 39.
    T. Li, H. He, T. Zhang, B. Zhao, Z. Chen, H. Dai, R. Xue, Z. Chen, J. Alloys Compd. 684, 315 (2016)CrossRefGoogle Scholar
  40. 40.
    Q.G. Chi, L. Gao, X. Wang, J.Q. Lin, J. Sun, Q.Q. Lei, J. Alloys Compd. 559, 45 (2013)CrossRefGoogle Scholar
  41. 41.
    A.A. Felix, M.O. Orlandi, J.A. Varela, Solid State Commun. 151, 1377 (2011)CrossRefGoogle Scholar
  42. 42.
    R. Xue, Z. Chen, H. Dai, D. Liu, T. Li, G. Zhao, Mater. Res. Bull. 66, 254 (2015)CrossRefGoogle Scholar
  43. 43.
    P. Liu, Y. Lai, Y. Zeng, S. Wu, Z. Huang, J. Han, J. Alloys Compd. 650, 59 (2015)CrossRefGoogle Scholar
  44. 44.
    P. Lunkenheimer, R. Fichtl, S.G. Ebbinghaus, A. Loidl, Phys. Rev. B 70, 3352 (2004)CrossRefGoogle Scholar
  45. 45.
    J. Sebald, S. Krohns, P. Lunkenheimer, S.G. Ebbinghaus, S. Riegg, A. Reller, A. Loidl, Solid State Commun. 150, 857 (2010)CrossRefGoogle Scholar
  46. 46.
    J.Q. Wang, X. Huang, X.H. Zheng, D.P. Tang, J. Mater. Sci. Mater. Electron. 27, 1345 (2016)CrossRefGoogle Scholar
  47. 47.
    S. Krohns, P. Lunkenheimer, S.G. Ebbinghaus, A. Loidl, J. Appl. Phys. 103, 323 (2008)CrossRefGoogle Scholar
  48. 48.
    L. Singh, U.S. Rai, K.D. Mandal, J. Alloys Compd. 555, 176 (2013)CrossRefGoogle Scholar
  49. 49.
    Y. Huang, D. Shi, Y. Li, G. Li, Q. Wang, L. Liu, L. Fang, J. Mater. Sci. Mater. Electron. 24, 1994 (2013)CrossRefGoogle Scholar
  50. 50.
    M. Xiao, K. Wang, X.C. Yang, S. Xie, J. Mater. Sci. Mater. Electron. 25, 2710 (2014)CrossRefGoogle Scholar
  51. 51.
    M. Xiao, P. Sheng, J. Mater. Sci. Mater. Electron. 25, 1 (2016)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Dong Xu
    • 1
    • 2
    • 3
  • Yajun Zhu
    • 1
    • 2
  • Bin Zhang
    • 1
  • Xianning Yue
    • 1
  • Lei Jiao
    • 1
  • Juan Song
    • 1
  • Sujuan Zhong
    • 3
  • Jia Ma
    • 3
  • Li Bao
    • 3
  • Lei Zhang
    • 3
  1. 1.School of Materials Science and EngineeringJiangsu UniversityZhenjiangPeople’s Republic of China
  2. 2.School of Materials Science and EngineeringAnhui University of TechnologyMa’anshanPeople’s Republic of China
  3. 3.Zhengzhou Research Institute of Mechanical EngineeringZhengzhouPeople’s Republic of China

Personalised recommendations