Skip to main content
Log in

Enhanced photoelectrochemical properties of ZnO nanowire arrays annealed in air

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Highly ordered, single-crystal ZnO nanowire arrays (NWAs) were synthesized on transparent conducting oxide substrates by a facile seed layer assisted hydrothermal route. Annealing was applied onto these samples for enhancing the adhesion and eliminating the surface defects of ZnO NWAs. Further, the influence of annealing temperature (300–500 °C) was examined by a series of techniques, such as scanning electronic microscopy, X-ray diffraction, and photoelectrochemical (PEC) set up. Although there weren’t obvious changes in both the phase structure and morphology, the PEC activities of the samples were enhanced a lot after sintering, which was similar with that of TiO2 nanorod arrays (NRAs) and was attributed to an enhancement in the crystal quality, adhesion and electric contact. It will facilitate the electron injection/transport both at the solid/ liquid interfaces and inside the NWA related electrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J. Yang, D. Wang, H. Han, C. Li, Accounts Chem. Res. 46, 1900 (2013)

    Article  Google Scholar 

  2. J. Ran, J. Zhang, J. Yu, M. Jaroniec, S.Z. Qiao, Chem. Soc. Rev. 43, 7787 (2014)

    Article  Google Scholar 

  3. J. Li, N. Wu, Catal. Sci. Technol. 5, 1360 (2015)

    Article  Google Scholar 

  4. A. Fujishima, K. Honda, Nature 238, 37 (1972)

    Article  Google Scholar 

  5. H. Tong, S. Ouyang, Y. Bi, N. Umezawa, M. Oshikiri, J. Ye, Adv. Mater. 24, 229 (2011)

    Article  Google Scholar 

  6. M. Li, P. Li, K. Chang, T. Wang, L. Liu, Q. Kang, S. Ouyang, J. Ye, Chem. Commun. 51, 7645 (2014)

    Article  Google Scholar 

  7. X. Gu, C. Li, S. Yuan, M. Ma, Y. Qiang, J. Zhu, Nanotechnology 27, 402001 (2016)

    Article  Google Scholar 

  8. B. Liu, E.S. Aydil, J. Am. Chem. Soc. 131, 3985 (2008)

    Article  Google Scholar 

  9. Y. Lin, G. Yuan, S. Sheehan, S. Zhou, D. Wang, Energy Environ. Sci. 4, 4862 (2011)

    Article  Google Scholar 

  10. L. Greene, M. Law, D.H. Tan, J. Goldberger, P. Yang, Nano Lett. 5, 1231 (2005)

    Article  Google Scholar 

  11. M. Law, L.E. Greene, J.C. Johnson, R. Saykally, P. Yang, Nat. Mater. 4, 455 (2005)

    Article  Google Scholar 

  12. C. Xu, J. Wu, U.V. Desai, D. Gao, Nano Lett. 12, 2420 (2012)

    Article  Google Scholar 

  13. C. Xu, J. Wu, U.V. Desai, D. Gao, J. Am. Chem. Soc. 133, 8122 (2011)

    Article  Google Scholar 

  14. J. Chung, J. Lee, S. Lim, Physica B 405, 2593 (2010)

    Article  Google Scholar 

  15. C. Sui, Z. Lu, T. Xu, Opt. Mater. 35, 2649 (2013)

    Article  Google Scholar 

  16. I.A. Bhatti, T.A.N. Peiris, T.D. Smith, K.G. UpulWijayantha, Mater. Lett. 93, 333 (2013)

    Article  Google Scholar 

  17. I. Shalish, H. Temkin, V. Narayanamurti, Phys. Rev. B 69, 245401 (2004)

    Article  Google Scholar 

  18. H.P. Maruska, A.K. Ghosh, Sol. Energy 20, 443 (1978)

    Article  Google Scholar 

  19. J. Bandara, U.W. Pradeep, Thin Solid Films 517, 952 (2008)

    Article  Google Scholar 

  20. C. Fàbrega, D. Monllor-Satoca, S. Ampudia, A. Parra, T. Andreu, J.R. Morante, J. Phys. Chem. C 117, 20517 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the Fundamental Research Funds for the Central Universities (2015XKZD01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiuquan Gu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Gu, X., Zhao, Y. et al. Enhanced photoelectrochemical properties of ZnO nanowire arrays annealed in air. J Mater Sci: Mater Electron 29, 4058–4064 (2018). https://doi.org/10.1007/s10854-017-8349-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-8349-5

Navigation