Skip to main content
Log in

Crystal growth and characterization of an efficient semi-organic nonlinear optical (NLO) donor-π-acceptor single crystal: 2-amino-5-nitropyridinium nitrate (2A5NPN) grown by slow evaporation solution technique (SEST)

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The semi-organic nonlinear optical 2-amino-5-nitropyridinium nitrate (2A5NPN) single crystals were successfully grown by slow evaporation solution technique with the dimension of 10 × 10 × 10 mm3. The crystalline structure of 2A5NPN was confirmed by single crystal X-ray diffraction measurement. The optical quality of the grown crystal was studied using UV–Vis–NIR spectrum analysis. It shows that the grown crystal has 69% of transmittance with the lower cut-off wavelength of 404 nm. The refractive index of 2A5NPN single crystal was calculated using the Prism-coupling method. The thermal diffusivity was analyzed using photoacoustic measurement. The dark and photoconductivity of the grown crystal were analyzed and the result shows that the crystal has negative photoconductivity nature. The mechanical strength of 2A5NPN crystal was analyzed by Vickers microhardness tester and the hardness number (\({H_v}\)), Meyer’s index (n), yield strength (σy), stiffness constant (C11) and Hays–Kendall relation were evaluated. The fundamental solid state parameters such as valence electron plasma energy (ћωp), Penn gap (Ep), Fermi energy (Ef) and various type of electronic polarizability (α) of the grown crystal were determined using the dielectric parameters. The HOMO–LUMO energy and first-order hyperpolarizability (β) of 2A5NPN molecule were calculated in the gas phase by density functional theory. The laser damage threshold measurement has been performed and it reveals that the optical damage tolerance power of the grown crystal is high compared to other organic and inorganic NLO crystals. The third-order nonlinearity of 2A5NPN was assessed using an open and closed aperture Z-scan technique. The above results show that 2A5NPN crystal is a potential candidate for nonlinear optical device applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. R.W. Munn, C.N. Ironside, Principles and Applications of Nonlinear Optical Materials (Springer, Dordrecht, 1993). doi:10.1007/978-94-011-2158-3

    Book  Google Scholar 

  2. H. Rath, J. Sankar, V. PrabhuRaja, T. Chandrashekar, A. Nag, D. Goswami, Core-modified expanded porphyrins with large third-order nonlinear optical response. J. Am. Chem. Soc. 127, 11608–11609 (2005). doi:10.1021/ja0537575

    Article  Google Scholar 

  3. S. Marder, J. Perry, C. Yakymyshyn, Organic salts with large second-order optical nonlinearities. Chem. Mater. 6, 1137–1147 (1994). doi:10.1021/cm00044a012

    Article  Google Scholar 

  4. H.O. Marcy, M.J. Rosker, L.F. Warren, P.H. Cunningham, C.A. Thomas, L.A. DeLoach, S.P. Velsko, C.A. Ebbers, J.-H. Liao, M.G. Kanatzidis, L-histidine tetrafluoroborate: a solution-grown semiorganic crystal for nonlinear frequency conversion. Opt. Lett. 20, 252 (1995). doi:10.1364/ol.20.000252

    Article  Google Scholar 

  5. N. Karthick, R. Sankar, R. Jayavel, S. Pandi, Synthesis, growth and characterization of semi-organic nonlinear optical bis thiourea antimony tri bromide (BTAB) single crystals. J. Cryst. Growth 312, 114–119 (2009). doi:10.1016/j.jcrysgro.2009.09.054

    Article  Google Scholar 

  6. C.B. Aakeröy, A.M. Beatty, M. Nieuwenhuyzen, M. Zou, A structural study of 2-amino-5-nitropyridine and 2-amino-3-nitropyridine: intermolecular forces and polymorphism. J. Mater. Chem. 8, 1385–1389 (1998). doi:10.1039/a800073e

    Article  Google Scholar 

  7. R. Masse, J. Zyss, A new approach in the design of polar crystals for quadratic nonlinear optics exemplified by the synthesis and crystal structure of 2-amino-5-nitropyridinium dihydrogen monophosphate (2A5NPDP). Mol. Eng. 1, 141–152 (1991). doi:10.1007/bf00420050

    Article  Google Scholar 

  8. G. Anandha babu, P. Ramasamy, A. Chandramohan, Studies on the synthesis, structure, growth and physical properties of an organic NLO crystal: 2-Amino-5-nitropyridinium phenolsulfonate. Mater. Res. Bull. 46, 2247–2251 (2011). doi:10.1016/j.materresbull.2011.09.001

    Article  Google Scholar 

  9. G. Anandha Babu, R.P. Ramasamy, P. Ramasamy, V. Krishna Kumar, Synthesis, crystal growth, and characterization of an organic nonlinear optical donor-π-acceptor single crystal: 2-amino-5-nitropyridinium-toluenesulfonate. Cryst. Growth Des. 9, 3333–3337 (2009). doi:10.1021/cg9001384

    Article  Google Scholar 

  10. S. Manikandan, S. Dhanuskodi, EPR of γ-irradiated single crystals of 2-amino-5-nitro pyridinium l-tartrate: a NLO material. Spectrochim. Acta A 67, 160–165 (2007). doi:10.1016/j.saa.2006.06.039

    Article  Google Scholar 

  11. J. Pecaut, Y. Le Fur, R. Masse, Crystal engineering and structural investigations of the 2-amino-5-nitropyridinium salts C5H6N3O2 +.HSO4 and C5H6N3O2 +.H2AsO4 . Acta Crystallogr. B 49, 535–541 (1993). doi:10.1107/s0108768192011431

    Article  Google Scholar 

  12. S. Manivannan, S. Dhanuskodi, K. Kirschbaum, S.K. Tiwari, Design of an efficient solution grown semiorganic NLO crystal for short wavelength generation: 2-amino-5-nitropyridinium tetrafluoroborate. Cryst. Growth Des. 5, 1463–1468 (2005). doi:10.1021/cg049562a

    Article  Google Scholar 

  13. M.A. Rajkumar, S.J. Xavier, S. Anbarasu, P.A. Devarajan, Growth and characterization studies of an efficient semiorganic NLO single crystal: 2-amino 5-nitropyridinium Dihydrogen Phosphate (2A5NPDP) by Sankaranarayanan–Ramasamy method. Optik—Int. J. Light Electron Opt. 127, 2187–2192 (2016). doi:10.1016/j.ijleo.2015.10.239

    Article  Google Scholar 

  14. A. Ibanez, J.P. Levy, C. Mouget, E. Prieur, Crystal growth of a promising nonlinear optical material: 2-amino-5-nitropyridinium chloride. J. Solid State Chem. 129, 22–29 (1997). doi:10.1006/jssc.1996.7213

    Article  Google Scholar 

  15. M. Bagieu-Beucher, R. Masse, D.T. Qui, Structural investigations of two 2-amino-5-nitropyridinium Salts: C5H6N3O2 +NO3 and (C5H6N3O2+)2CuCl4 2–. J. Inorg. Gen. Chem. 606, 59–71 (1991). doi:10.1002/zaac.19916060106

    Google Scholar 

  16. M. Ambrose Rajkumar, S. Stanly John Xavier, S. Anbarasu, X. Martina Mejeba, P.A. Devarajan, ‘A convenient route to synthesize and grow 2-amino 5-nitro pyridinium nitrate crystals for laser generation’. Sci. Acta Xaver. Int. Sci. J. 4, 73–78 (2013). ISSN 0976-1152

    Google Scholar 

  17. M. Ambrose Rajkumar, S. Stanly, John Xavier, S. Anbarasu, P.A. Devarajan, Microhardness dielectric and photoconductivity studies of 2-amino 5-nitropyridinium nitrate NLO single crystals. Res. J. Phys. Sci. 2, 1–4 (2014). ISSN 2320-4796

    Google Scholar 

  18. V. Sivasubramani, M. Senthil Pandian, P. Ramasamy, Studies on 2-amino-5-nitropyridinium nitrate (2A5NPN): A semi-organic third order nonlinear optical single crystal. AIP Conf. Proc. 1731, 100007 (2016). doi:10.1063/1.4948013

    Article  Google Scholar 

  19. V. Sivasubramani, M. Senthil Pandian, K. Boopathi, P. Ramasamy, Crystal growth, structural, optical, thermal and dielectric studies of nonlinear optical 2-amino-5-nitropyridinium nitrate (2A5NPN) single crystals. Mater. Res. Innov. (2016). doi:10.1080/14328917.2016.1264859

    Google Scholar 

  20. N. Sudharsana, V. Krishnakumar, R. Nagalakshmi, Synthesis, experimental and theoretical Studies of 8-hydroxyquinolinium 3,5-dinitrobenzoate single crystal. J. Cryst. Growth 398, 45–57 (2014). doi:10.1016/j.jcrysgro.2014.03.051

    Article  Google Scholar 

  21. N. Muthukumarasamy, S. Jayakumar, M.D. Kannan, R. Balasundaraprabhu, P. Ramanathaswamy, Structural and optical properties of hot wall deposited CdSe0.15Te0.85 thin films. J. Cryst. Growth 263, 308–315 (2004). doi:10.1016/j.jcrysgro.2003.11.081

    Article  Google Scholar 

  22. T. Yan, Y. Yu, Y. Guo, Y. Sang, H. Liu, S. Sun et al., Growth, structural, optical and thermal properties of Yb-doped and Yb–Mg codoped LiNbO3 single crystals. J. Alloys Compd. 564, 1–7 (2013). doi:10.1016/j.jallcom.2013.01.177

    Article  Google Scholar 

  23. M. Magesh, G. Bhagavannarayana, P. Ramasamy, Synthesis, crystal growth and characterization of an organic material: 2-aminopyridinium succinate succinic acid single crystal. Spectrochim. Acta A 150, 765–771 (2015). doi:10.1016/j.saa.2015.05.077

    Article  Google Scholar 

  24. S.A.M. Britto Dhas, E. Ramachandran, P. Raji, K. Ramachandran, S. Natarajan, Photoacoustic studies on the thermal properties of the NLO compound: L-alaninium maleate. Cryst. Res. Technol. 42, 601–606 (2007). doi:10.1002/crat.200610870

    Article  Google Scholar 

  25. W.L.B. Melo, R.M. Faria, Photoacoustic procedure for measuring thermal parameters of transparent solids. Appl. Phys. Lett. 67, 3892 (1995). doi:10.1063/1.115308

    Article  Google Scholar 

  26. N. Joshi, Photoconductivity (Marcel Dekker, New York, 1990)

    Google Scholar 

  27. P.R. Deepti, J. Shanti, Structural and optical studies of potential ferroelectric crystal: KDP doped TGS. J. Sci. Res. 6, 1–9 (2014). doi:10.3329/jsr.v6i1.16584

    Google Scholar 

  28. M. Magesh, G. Anandha Babu, P. Ramasamy, Investigation on growth and characterization of dimethyl ammonium picrate (DMAP) single crystal grown by conventional and SR method. J. Cryst. Growth 324, 201–206 (2011). doi:10.1016/j.jcrysgro.2011.03.057

    Article  Google Scholar 

  29. M. Gupta, N. Sinha, B. Kumar, Growth and characterization of new semi-organic l-proline strontium chloride monohydrate single crystals. Physica B 406, 63–67 (2011). doi:10.1016/j.physb.2010.10.016

    Article  Google Scholar 

  30. K. Sangwal, On the reverse indentation size effect and microhardness measurement of solids. Mater. Chem. Phys. 63, 145–152 (2000). doi:10.1016/s0254-0584(99)00216-3

    Article  Google Scholar 

  31. E.M. Onitsch, Systematic metallographic and mineralogic structures. Mikroscopia 2, 131–151 (1947)

    Google Scholar 

  32. M. Hanneman, Metall. Manchu 23, 135 (1941)

    Google Scholar 

  33. T.S. Shyju, S. Anandhi, R. Gopalakrishnan, Comparative studies on conventional solution and Sankaranarayanan–Ramasamy (SR) methods grown potassium sodium tartrate tetrahydrate single crystals. CrystEngComm 14, 1387–1396 (2012). doi:10.1039/c1ce05849e

    Article  Google Scholar 

  34. W.A. Wooster, Physical properties and atomic arrangements in crystals. Rep. Prog. Phys. 16, 62–82 (1953). doi:10.1088/0034-4885/16/1/302

    Article  Google Scholar 

  35. B. Lal, K.K. Bamzai, P.N. Kotru, B.M. Wanklyn, Microhardness, fracture mechanism and dielectric behaviour of flux-grown GdFeO3 single crystals. Mater. Chem. Phys. 85, 353–365 (2004). doi:10.1016/j.matchemphys.2004.01.013

    Article  Google Scholar 

  36. E.E.A. Shepherd, J.N. Sherwood, G.S. Simpson, The growth and perfection of organic non-linear optical crystals: N-methyl urea (NMU) from methanol solution. III. The growth of large single crystals for optical examination. J. Cryst. Growth 167, 709–715 (1996). doi:10.1016/0022-0248(96)00283-7

    Article  Google Scholar 

  37. K. Senthil, S. Kalainathan, F. Hamada, Y. Kondo, Bulk crystal growth and nonlinear optical characterization of a stilbazolium derivative crystal: 4-[2-(3,4-dimethoxyphenyl)ethenyl]-l methylpyridinium tetraphenylborate (DSTPB) for NLO device fabrication. RSC Adv. 5, 79298–79308 (2015). doi:10.1039/c5ra14186a

    Article  Google Scholar 

  38. N.M. Ravindra, V. Srivastava, Electronic polarizability as a function of the penn gap in semiconductors. Infrared Phys. 20, 67–69 (1980). doi:10.1016/0020-0891(80)90009-3

    Article  Google Scholar 

  39. G. Morgan, N. Shahtahmasebi, Screened ions in perfect solids-a model calculation. J. Phys. C 6, 3385–3402 (1973). doi:10.1088/0022-3719/6/23/013

    Article  Google Scholar 

  40. P. Vasudevan, S. Sankar, S. Gokul Raj, Studies on second harmonic generation efficiency of organic material l-arginine maleate dihydrate. Optik—Int. J. Light Electron Opt. 124, 4155–4158 (2013). doi:10.1016/j.ijleo.2012.12.036

    Article  Google Scholar 

  41. M. Amalanathan, I.H. Joe, S.S. Prabhu, Charge transfer interaction and terahertz studies of a nonlinear optical materiall-glutamine picrate: a DFT study. J. Phys. Chem. A 114, 13055–13064 (2010). doi:10.1021/jp107414x

    Article  Google Scholar 

  42. M. Kandasamy, G. Velraj, S. Kalaichelvan, Vibrational spectra, NMR and HOMO–LUMO analysis of 9-fluorenone-2-carboxylic acid. Spectrochim. Acta A 105, 176–183 (2013). doi:10.1016/j.saa.2012.11.065.

    Article  Google Scholar 

  43. R. Pearson, Chemical hardness and density functional theory. J. Chem. Sci. 117, 369–377 (2005). doi:10.1007/bf02708340

    Article  Google Scholar 

  44. D.A. Kleinman, Nonlinear dielectric polarization in optical media. Phys. Rev. 126, 1977–1979 (1962). doi:10.1103/physrev.126.1977

    Article  Google Scholar 

  45. N.L. Boling, M.D. Crisp, G. Dubé, Laser induced surface damage. Appl. Opt. 12 650–660 (1973). doi:10.1364/ao.12.000650

    Article  Google Scholar 

  46. D. Ashkenasi, M. Lorenz, R. Stoian, A. Rosenfeld, Surface damage threshold and structuring of dielectrics using femtosecond laser pulses: the role of incubation. Appl. Surf. Sci. 150, 101–106 (1999). doi:10.1016/s0169-4332(99)00228-7

    Article  Google Scholar 

  47. M. Senthil Pandian, P. Ramasamy, B. Kumar, A comparative study of ferroelectric triglycine sulfate (TGS) crystals grown by conventional slow evaporation and unidirectional method. Mater. Res. Bull. 47, 1587–1597 (2012). doi:10.1016/j.materresbull.2012.01.030

    Article  Google Scholar 

  48. D. Joseph Daniel, P. Ramasamy, Studies on semi-organic non linear optical single crystal: lithium formate monohydrate (HCO2Li⋅H2O). Opt. Mater. 36, 971–976 (2014). doi:10.1016/j.optmat.2014.01.004

    Article  Google Scholar 

  49. C. Ji, T. Chen, Z. Sun, Y. Ge, W. Lin, J. Luo, Q. Shi, M. Hong, Bulk crystal growth and characterization of imidazolium l-tartrate (IMLT): a novel organic nonlinear optical material with a high laser-induced damage threshold. CrystEngComm 15, 2157–2162 (2013). doi:10.1039/c3ce26942f

    Article  Google Scholar 

  50. N. Vijayan, G. Bhagavannarayana, R. Ramesh Babu, R. Gopalakrishnan, K.K. Maurya, P. Ramasamy, A Comparative study on solution- and Bridgman-grown single crystals of benzimidazole by high-resolution X-ray diffractometry, Fourier transform infrared, microhardness, laser damage threshold, and second-harmonic generation measurements. Cryst. Growth Des. 6, 1542–1546 (2006). doi:10.1021/cg060002g

    Article  Google Scholar 

  51. X. Liu, X. Wang, X. Yin, S. Liu, W. He, L. Zhu, G. Zhang, D. Xu, Bulk growth and physical properties of diguanidinium phosphate monohydrate (G2HP) as a multi-functional crystal. CrystEngComm 16, 930–938 (2014). doi:10.1039/c3ce41896k

    Article  Google Scholar 

  52. R. Jauhar, V. Viswanathan, P. Vivek, G. Vinitha, D. Velmurugan, P. Murugakoothan, A new organic NLO material isonicotinamidium picrate (ISPA): crystal structure, structural modeling and its physico-chemical properties. RSC Adv. 6, 57977–57985 (2016). doi:10.1039/c6ra10477k

    Article  Google Scholar 

  53. A. Subashini, R. Kumaravel, S. Leela, H.S. Evans, D. Sastikumar, K. Ramamurthi, Synthesis, growth and characterization of 4-bromo-4′chloro benzylidene aniline -A third order nonlinear optical material. Spectrochim. Acta A 78 (2011). doi:10.1016/j.saa.2010.11.041. 935–941

    Article  Google Scholar 

  54. M. Sheik-Bahae, A.A. Said, T.H. Wei, D.J. Hagan, E.W. Van Stryland, Sensitive measurement of optical nonlinearities using a single beam. IEEE J. Quantum Electron. 26, 760–769 (1990). doi:10.1109/3.53394

    Article  Google Scholar 

  55. S. Manikandan, T.C. Sabari Girisun, R. Mohandoss, S. Dhanuskodi, S. Manivannan, Third-order NLO properties of solution grown methyl-p-hydroxy benzoate single crystals. Opt. Spectrosc. 117, 469–473 (2014). doi:10.7868/s0030403414080182

    Article  Google Scholar 

  56. J. Wang, W. Blau, Inorganic and hybrid nanostructures for optical limiting. J. Opt. A 11, 024001 (2009). doi:10.1088/1464-4258/11/2/024001

    Article  Google Scholar 

  57. K. Senthil, S. Kalainathan, A. Kumar, P. Aravindan, Investigation of synthesis, crystal structure and third-order NLO properties of a new stilbazolium derivative crystal: a promising material for nonlinear optical devices. RSC Adv. 4, 56112–56127 (2014). doi:10.1039/c4ra09112d

    Article  Google Scholar 

  58. H. Mohammed Shanshool, M. Yahaya, W. Mat Yunus, I. Abdullah, Using z-scan technique to measure the nonlinear optical properties of PMMA/ZNO nanocomposites. Jurnal Teknologi 78, 33–38 (2016). doi:10.11113/jt.v78.7461

    Article  Google Scholar 

  59. K. Naseema, M. Shyma, K. Manjunatha, A. Muralidharan, G. Umesh, V. Rao, χ (3) measurement and optical limiting studies of urea picrate. Opt. Laser Technol. 43, 1286–1291 (2011). doi:10.1016/j.optlastec.2011.03.025

    Article  Google Scholar 

  60. Y. Zhou, E. Wang, J. Peng, J. Liu, C. Hu, R. Huang, X. You, Synthesis and the third-order optical nonlinearities of two novel charge-transfer complexes of a heteropoly blue type (C9H7NO)4 H7PMo12O40·3H2O (C9H7NO = quinolin-8-ol) and (phen)3 H7PMo12O40·CH3CN·H2O (phen = 1,10-phenanthroline). Polyhedron 18, 1419–1423 (1999). doi:10.1016/s0277-5387(98)00448-3

    Article  Google Scholar 

  61. L. Pan, I. Utkin, R. Fedosejevs, Passively Q-switched ytterbium-doped double-clad fiber laser with a Cr4+:YAG saturable. IEEE Photonics Technol. Lett. 19, 1979–1981 (2007). doi:10.1109/lpt.2007.909700

    Article  Google Scholar 

  62. J.L. Xu, X.L. Li, J.L. He, X.P. Hao, Y.Y. Yang, Y.Z. Wu et al., Efficient graphene Q switching and mode locking of 134 μm neodymium lasers. Opt. Lett. 37, 2652 (2012). doi:10.1364/ol.37.002652

    Article  Google Scholar 

  63. Z. Luo, Y. Li, M. Zhong, Y. Huang, X. Wan, J. Peng, J. Weng, Nonlinear optical absorption of few-layer molybdenum diselenide (MoSe2) for passively mode-locked soliton fiber laser. Photonics Res. 3, A79 (2015). doi:10.1364/prj.3.000a79

    Article  Google Scholar 

  64. S. Set, H. Yaguchi, Y. Tanaka, M. Jablonski, Laser mode locking using a saturable absorber incorporating carbon nanotubes. J. Lightwave Technol. 22, 51–56 (2004). doi:10.1109/jlt.2003.822205

    Article  Google Scholar 

  65. T. Erneux, P. Mandel, Stationary, harmonic, and pulsed operations of an optically bistable laser with saturable absorber. II. Phys. Rev. A 30, 1902–1909 (1984). doi:10.1103/physreva.30.1902

    Article  Google Scholar 

  66. H. Fan, Q. Ren, X. Wang, T. Li, J. Sun, G. Zhang, D. Xu, G. Yu, Z. Sun, Investigation on third-order optical nonlinearities of two organometallic Dmit2- complexes Using Z-Scan technique. Nat. Sci. 01, 136–141 (2009). doi:10.4236/ns.2009.12017

    Google Scholar 

  67. A.C. Ji, X.C. Xie, W.M. Liu, Quantum magnetic dynamics of polarized light in arrays of microcavities. Phys. Rev. Lett. 99, 183602 (2007). doi:10.1103/physrevlett.99.183602

    Article  Google Scholar 

  68. A.-C. Ji, W.M. Liu, J.L. Song, F. Zhou, Dynamical creation of fractionalized vortices and vortex lattices. Phys. Rev. Lett. 101, 010402 (2008). doi:10.1103/physrevlett.101.010402

    Article  Google Scholar 

  69. Y.-Y. Zhang, J. Hu, B.A. Bernevig, X. Wang, X.C. Xie, W. Liu, Localization and the Kosterlitz-Thouless transition in disordered graphene. Phys. Rev. Lett. 102, 106401 (2009). doi:10.1103/physrevlett.102.106401

    Article  Google Scholar 

  70. Z.G. Zang, Y.J. Zhang, Low-switching power (< 45 mW) optical bistability based on optical nonlinearity of ytterbium-doped fiber with a fiber Bragg grating pair. J. Mod. Opt. 59, 161–165 (2012). doi:10.1080/09500340.2011.622842

    Article  Google Scholar 

  71. Z. Zang, Y. Zhang, Analysis of optical switching in a Yb3+-doped fiber Bragg grating by using self-phase modulation and cross-phase modulation. Appl. Opt. 51, 3424–3430 (2012). doi:10.1364/ao.51.003424

    Article  Google Scholar 

  72. Z. Zang, All-optical switching in Sagnac loop mirror containing an ytterbium-doped fiber and fiber Bragg grating. Appl. Opt. 52, 5701–5706 (2013). doi:10.1364/ao.52.005701

    Article  Google Scholar 

  73. R. Jauhar, S. Kalainathan, P. Murugakoothan, Three dimensional organic framework of 2-amino 4, 6 dimethoxypyrimidine p-toluenesulfonic acid monohydrate: synthesis, single crystal growth and its properties. J. Cryst. Growth 424, 42–48 (2015). doi:10.1016/j.jcrysgro.2015.05.003

    Article  Google Scholar 

  74. A. Arunkumar, P. Ramasamy, Bulk single crystals of ammonium acid phthalate grown by the Sankaranarayanan–Ramasamy method for optical limiting applications. J. Cryst. Growth 401, 195–199 (2014). doi:10.1016/j.jcrysgro.2013.10.049

    Article  Google Scholar 

  75. M. Krishna Kumar, S. Sudhahar, P. Pandi, G. Bhagavannarayana, R. Mohan Kumar, Studies of the structural and third-order nonlinear optical properties of solution grown 4-hydroxy-3-methoxy-4′-N′-methylstilbazolium tosylate monohydrate crystals. Opt. Mater. 36, 988–995 (2014). doi:10.1016/j.optmat.2014.01.007

    Article  Google Scholar 

  76. F. Li, N. Zong, F. Zhang, J. Yang, F. Yang, Q. Peng et al., Investigation of third-order optical nonlinearity in KBe2BO3F2 crystal by Z-scan. Appl. Phys. B 108, 301–305 (2012). doi:10.1007/s00340-012-4985-x

    Article  Google Scholar 

  77. D. Wang, T. Li, S. Wang, J. Wang, Z. Wang, X. Xu, F. Zhang, Study on nonlinear refractive properties of KDP and DKDP crystals. RSC Adv. 6, 14490–14495 (2016). doi:10.1039/c5ra24761f

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank DST-SERB for financial support under the Grant No. SB/EMQ-015/2013. The authors acknowledge Prof. S. Kalainathan (Centre for Crystal Growth) and D. Rajan Babu (School of Advanced Sciences), VIT University, Vellore, Tamilnadu, India for providing the Z-scan, LDT and refractive index measurements. The authors also gratefully acknowledge Dr. N. Vijayan, Senior Scientist, Crystal Growth and X-Ray Analysis Section, National Physical Laboratory, New Delhi, India for providing Vickers microhardness measurement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sivasubramani Vediyappan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vediyappan, S., Vijayan, M., Muthu, S.P. et al. Crystal growth and characterization of an efficient semi-organic nonlinear optical (NLO) donor-π-acceptor single crystal: 2-amino-5-nitropyridinium nitrate (2A5NPN) grown by slow evaporation solution technique (SEST). J Mater Sci: Mater Electron 29, 2091–2109 (2018). https://doi.org/10.1007/s10854-017-8122-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-8122-9

Navigation