Synthesis, structural, optical, morphological and magnetic characterization of copper substituted nickel ferrite (CuxNi1−xFe2O4) through co-precipitation method

An Editorial Expression of Concern to this article was published on 08 May 2020

This article has been updated

Abstract

The CuxNi1−xFe2O4 (x = 0.0, 0.2, 0.5, 0.8, 1.0) nanoferrite powder were synthesized through chemical co-precipitation method using only (FeCl3, 6H2O), (NiCl2, 6H2O), (CuCl2, 4H2O), NaOH and acid oleic as raw materials. The synthesized powder was characterized by X-ray diffraction (XRD); it was used to determine the structural properties. The transmission electron microscopy and the scanning electron microscopy were used to determine the morphology and particle size. The Fourier Transform Infra-Red (FT-IR) spectroscopy is used to deduce the structural investigation and confirmation of ferrite. Raman spectroscopy is used to verify that we have synthesized CuxNi1−xFe2O4 and determines their phonon modes. The thermo gravimetric analysis findings allow the thermal cycle determination of samples whereas differential thermal analysis findings allow the phase transition temperature identification. The optical study UV–Visible is used to calculate the band gap energies. The vibrating sample magnetometer was used to obtain the hysteresis parameters. In conclude, the XRD confirmed the single phase spinel structure. The lattice constant increased with the increased copper contents. The size of nanoparticles decreased with the increased copper contents. The magnetic property of the CuxNi1−xFe2O4 shows remarkable changes with change of Cu2+.The variation of copper substitution has a significant influence on the optical, grain size and magnetic properties. The mean crystalline size of the synthesized ferrite was in the range of 14–43 nm.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Change history

References

  1. 1.

    Y. Qu, H. Yang, N. Yang, Y. Fan, H. Zhu, G.T. Zou, Mater. Lett. 60, 3548–3552 (2006)

    CAS  Article  Google Scholar 

  2. 2.

    P.L. Phillips, J.C. Knight, B.J. Mangan, P. St., J. Russell, M.D.B. Charlton, G.J. Parker, J. Appl. Phys. 85, 6338–6345 (1999)

    Google Scholar 

  3. 3.

    M.H. Sousa, F.A. Tourinho, J. Phys. Chem. B 105, 1168–1175 (2001)

    CAS  Article  Google Scholar 

  4. 4.

    F. Mazaleyrat, L.K. Varga, J. Magn. Magn. Mater. 215–216, 253–259 (2000)

    Article  Google Scholar 

  5. 5.

    D.E. Speliotis, J. Magn. Magn. Mater. 93, 29–35 (1999)

    Article  Google Scholar 

  6. 6.

    N.D. Kandpal, N. Sah, R. Loshali, R. Joshi, J. Prasad, J. Sci. Ind. Res. 73, 87–90 (2014)

    CAS  Google Scholar 

  7. 7.

    M. Kaur, B.S. Randhawa, P.S. Tarsikka, Ind. J. Eng. Mater. Sci. 20, 325–328 (2013)

    CAS  Google Scholar 

  8. 8.

    M. Kaur, S. Rana, P.S. Tarsikka, Ceram. Int. 38, 4319–4323 (2012)

    CAS  Article  Google Scholar 

  9. 9.

    W.L. Suchanek, R.E. Riman, Adv. Sci. Technol. 45, 184–193 (2006)

    CAS  Article  Google Scholar 

  10. 10.

    S.K. Shrivastava, N.S. Gajbhiye, J. Am. Ceram. Soc. 95, 3678–3682 (2012)

    Article  Google Scholar 

  11. 11.

    S.E. Shirsath, B.G. Toksha, K.M. Jadhav, Mater. Chem. Phys. 117, 163–168 (2009)

    CAS  Article  Google Scholar 

  12. 12.

    C.N. Chinnasamy, A. Narayanasamy, N. Ponpandian, K. Chattopadhayay, K. Shinoda, B. Jeyadevan, K. Tohji, K. Nakatsuka, T. Furubayashi, I. Nakatani, Phys. Rev. B 63, 184108 (2001)

    Article  Google Scholar 

  13. 13.

    C. Upadhyay, H.C. Devabrata Mishtra, S. Verma, R.P. Anand Das, J. Magn. Magn. Mater. 260, 188–194 (2003)

    CAS  Article  Google Scholar 

  14. 14.

    Z. Cvejic, S. Rakic, A. Kremenovic, B. Antic, C. Jovale-kic, P. Colomban, Solid State Sci. 8, 908–915 (2006)

    CAS  Article  Google Scholar 

  15. 15.

    V. Pallai, D.O. Shah, J. Magn. Magn. Mater. 163, 243–248 (1996)

    Article  Google Scholar 

  16. 16.

    F.S. Tehrani, V. Daadmehr, A.T. Rezakhani, R.H. Akbarnejad, S. Gholipour, J. Supercond. Novel Magn. 25, 2443–2455 (2012)

    Article  Google Scholar 

  17. 17.

    C. Luadthong, V. Itthibenchapong, N. Viriya-empikul, K. Faungnawakij, P. Pavasant, W. Tanthapanichakoon, Mater. Chem. Phys. 143, 203–208 (2013)

    CAS  Article  Google Scholar 

  18. 18.

    S.A. Masti, A.K. Sharma, P.N. Vasambekar, Adv. Appl. Sci. Res. 4, 163–166 (2013)

    CAS  Google Scholar 

  19. 19.

    C. Hammond, The basics of crystallography and diffraction. International union of crystallography. Oxford University Press, Oxford (1997)

    Google Scholar 

  20. 20.

    R. Suresh, P. Moganavally, M. Deepa, Int. J. ChemTech Res. 8, 113–116 (2015)

    CAS  Google Scholar 

  21. 21.

    S.M. Hoque, M.A. Choudhury, M.F. Islam, J. Magn. Magn. Mater. 251, 292–303 (2002)

    CAS  Article  Google Scholar 

  22. 22.

    M.A. Gabal, Y.M. Al Angari, S.S. Al-Juaid, J. Alloys Compd. 492, 411–415 (2010)

    CAS  Article  Google Scholar 

  23. 23.

    A. Pradeep, G. Chandrasekaran, Mater. Lett. 60, 371–374 (2006)

    CAS  Article  Google Scholar 

  24. 24.

    Z. Wang, P. Lazor, S.K. Saxena, H.S.C. O’Neill, Mater. Res. Bull. 37 1589–1602 (2002)

    CAS  Article  Google Scholar 

  25. 25.

    A. Ahlawat, V.G. Sathe, Mossbauer, J. Raman Spectrosc. 42, 1087–1094 (2011)

    CAS  Article  Google Scholar 

  26. 26.

    S. Sivakumar, D. Anusuya, C.P. Khatiwada, J. Sivasubramanian, A. Venkatesan, P. Soundhirarajan, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 128, 69–75 (2014)

    CAS  Article  Google Scholar 

  27. 27.

    S. Bagheri, K.G. Chandrappa., S.B.A. Hamid, Res. J. Chem. Sci. 3, 62–68 (2013)

    CAS  Google Scholar 

  28. 28.

    S. Shen, C.X. Kronawitter, J. Jiang, S.S. Mao, L. Guo, Nano Res. 5, 327–336 (2012)

    CAS  Article  Google Scholar 

  29. 29.

    A. Bouaine, N. Brihi, G. Schmerber, C. Ulhaq-Bouillet, S. Colis, A. Dinia, J. Phys. Chem. C 111, 2924–2928 (2007)

    CAS  Article  Google Scholar 

  30. 30.

    Y.R. Park, K.J. Kim, J. Appl. Phys. 94, 6401–6404 (2003)

    CAS  Article  Google Scholar 

  31. 31.

    S. Colis, H. Bieber, S. Begin-Colin, G. Schmerber, C. Leuvrey, A. Dinia, Chem. Phys. Lett. 422, 529–533 (2006)

    CAS  Article  Google Scholar 

  32. 32.

    R. Branek, H. Kisch, Photochem. Photobiol. Sci. 7, 40–48 (2008)

    Article  Google Scholar 

  33. 33.

    J.I. Pankove, Optical processes in semiconductors. Prentice-Hall Inc., Englewood Cliff pp. 34–86 (1971)

    Google Scholar 

  34. 34.

    M. Mohammadikish, Ceram. Int. 40, 1351–1358 (2014)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The present work was supported by the Research Funds of Electrochemistry, Materials and Environment Research Unit UREME (UR17ES45), Faculty of Sciences Gabes University, Tunisia and Structures, Properties and Modeling of Solids (SPMS) Laboratory, Ecole Centrale Paris, France.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Abdelmajid Lassoued.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lassoued, A., Lassoued, M.S., Karolak, F. et al. Synthesis, structural, optical, morphological and magnetic characterization of copper substituted nickel ferrite (CuxNi1−xFe2O4) through co-precipitation method. J Mater Sci: Mater Electron 28, 18480–18488 (2017). https://doi.org/10.1007/s10854-017-7795-4

Download citation