Journal of Materials Science: Materials in Electronics

, Volume 28, Issue 21, pp 15819–15825 | Cite as

Effect of Co substitution on magnetic and magnetocaloric properties in multiferroic hexagonal YMnO3

  • Feng Wan
  • Xiaojun Bai
  • Kaikai Song
  • Xuemei Han
  • Jianbang Zheng
  • Xin Lin
  • Chongde Cao


Polycrystalline YMn1−x Co x O3 with x ranging from 0 to 0.1 was synthesized by solid-state reaction method. The magnetic and magnetocaloric properties were investigated by superconducting quantum interference design magnetometer. With the increasing of Co-doping, the YMn1−x Co x O3 shows complex magnetic properties, including the existence of ferromagnetic component and spin glass state. The Curie temperature and maximum magnetic entropy change are also strongly dependent on Co content. Those results were ascribed to the complex mixed valence characteristics of Mn ions originated from the Co-doping.



The authors would like to express their gratitude to Prof. S. Yang for their help with properties measurements. We acknowledge the financial support of the National Natural Science Foundation of China (51471135, 51301133), the National Key Research and Development Program (No. 2016YFB1100101) and Shaanxi International Cooperation Program.


  1. 1.
    C.G. Zhang, X. Zhang, Y.H. Sun, S.Y. Liu, Phys. Rev. B 83, 054104 (2011)CrossRefGoogle Scholar
  2. 2.
    S. Namdeo, A.K. Sinha, M.N. Singh, A.M. Awasthi, J. Appl. Phys. 113, 104101 (2013)CrossRefGoogle Scholar
  3. 3.
    B. Sun, C.M. Li, Phys. Chem. Chem. Phys. 17, 6718–6721 (2015)CrossRefGoogle Scholar
  4. 4.
    A.M. Zhang, G.T. Zhou, L. Zheng, X.S. Wu, J. Appl. Phys. 115, 133907 (2014)CrossRefGoogle Scholar
  5. 5.
    Y. Ma, X.T. Wang, Z.F. Wang, H. Liu, Z. Wang, C.Y. Yang, Q. Zou, W.W. Zeng, J. Mater. Sci. 26, 398–404 (2015)Google Scholar
  6. 6.
    P. Liu, X.L. Wang, Z.X. Cheng, Y. Du, H. Kimura, Phys. Rev. B 83, 144404 (2011)CrossRefGoogle Scholar
  7. 7.
    H.W. Zheng, Y.F. Liu, W.Y. Zhang, S.J. Liu, H.R. Zhang, K.F. Wang, J. Appl. Phys. 107, 053901 (2010)CrossRefGoogle Scholar
  8. 8.
    B. Sun, P. Han, W. Zhao, Y. Liu, P. Chen, J. Phys. Chem. C 118, 18814–18819 (2014)CrossRefGoogle Scholar
  9. 9.
    W. Tian, G.T. Tan, L. Liu, J.X. Zhang, B. Winn, T. Hong, J.A. Fernandez-Baca, C.L. Zhang, Phys. Rev. B 89, 144417 (2014)CrossRefGoogle Scholar
  10. 10.
    J. Park, S. Lee, M. Kang, K.-H. Jang, C. Lee, S.V. Streltsov, V.V. Mazurenko, M.V. Valentyuk, J.E. Medvedeva, T. Kamiyama, J.-G. Park, Phys. Rev. B 82, 054428 (2010)CrossRefGoogle Scholar
  11. 11.
    M. Chandra Sekhar, S. Lee, G. Choi, C. Lee, J.-G. Park, Phys. Rev. B 72, 014402 (2005)CrossRefGoogle Scholar
  12. 12.
    J. Park, M. Kang, J. Kim, S. Lee, K.-H. Jang, A. Pirogov, J.-G. Park, Phys. Rev. B 79, 064417 (2009)CrossRefGoogle Scholar
  13. 13.
    E. Hanamura, Y. Tanabe, Phase Trans 79, 957 (2006)CrossRefGoogle Scholar
  14. 14.
    B.B. Van Aken, T.T.M. Palstra, A. Filippetti, N.A. Spaldin, Nat. Mater. 3, 164 (2004)CrossRefGoogle Scholar
  15. 15.
    M. Chandra Sekhar, N. Venkta Prasad, Ferroelectrics 345, 45–57 (2006)CrossRefGoogle Scholar
  16. 16.
    P.R. Ren, H.Q. Fan, X. Wang, Appl. Phys. Lett. 103, 152905 (2013)CrossRefGoogle Scholar
  17. 17.
    B. Sun, L. Wei, H. Li, P. Chen, J. Mater. Chem. C 2, 7547–7551 (2014)CrossRefGoogle Scholar
  18. 18.
    R. Thakur, R. Thakur, A. Bharathi, Modern. Phys. Lett. B 30, 5021 (2012)Google Scholar
  19. 19.
    W.R. Chen, F.C. Zhang, J. Miao, B. Xu, X.L. Dong, L.X. Cao, X.G. Qiu, B.R. Zhao, Appl. Phys. Lett. 87, 042508 (2005)CrossRefGoogle Scholar
  20. 20.
    B.V. Aken, J.-W.G. Bos, A.R. de Groot, T.M.T. Palstra, Phys. Rev. B 63, 125127 (2001)CrossRefGoogle Scholar
  21. 21.
    S.K. Srivastava, M. Kar, S. Ravi, P.K. Mishra, P.D. Babu, J. Magn. Magn. Mater. 320, 2382–2386 (2008)CrossRefGoogle Scholar
  22. 22.
    Y.L. Su, Z.P. Chen, Y.F. Li, D.M. Deng, S.X. Cao, J.C. Zhang, J. Supercond. Nov. Magn. 23, 501–506 (2010)CrossRefGoogle Scholar
  23. 23.
    L.D. Miao, G.B. Song, M.L. Wang, C. Xue, J. Chin. RE. Soc. 27, 46–50 (2009)Google Scholar
  24. 24.
    L. Guo, Z.Q. Zhou, H.M. Yuan, J. Alloys Comp. 616, 454–460 (2014)CrossRefGoogle Scholar
  25. 25.
    M. Zaghrioui, J.M. Grenèche, C. Autrent-Lambert, M. Gervais, J. Magn. Magn. Mater. 323, 509–514 (2011)CrossRefGoogle Scholar
  26. 26.
    Y. Ma, X.M. Chen, Y.J. Wu, Y.Q. Lin, Ceram. Inter. 36, 727–731 (2010)CrossRefGoogle Scholar
  27. 27.
    A.M. Zhang, W.H. Zhu, X.S. Wu, Q. Bian, Mod. Phys. Lett. B 27, 1350163 (2013)CrossRefGoogle Scholar
  28. 28.
    L. Jeuvrey, O. Peňa, A. Moure, C. Moure, J. Magn. Magn. Mater. 324, 717–722 (2012)CrossRefGoogle Scholar
  29. 29.
    C. Moure, D. Gutierrez, O. Peña, P. Duran, J. Solid State Chem. 163, 377–384 (2002)CrossRefGoogle Scholar
  30. 30.
    F. Wan, X.J. Bai, K.K. Song, X. Lin, X.M. Han, J.B. Zheng, C.D. Cao, J. Magn. Magn. Mater. 424, 371–375 (2017)CrossRefGoogle Scholar
  31. 31.
    Y.J. Yoo, Y.P. Lee, J.S. Park, J.-H. Kang, J. Kim, J. Appl. Phys. 112, 013903 (2012)CrossRefGoogle Scholar
  32. 32.
    A. Moure, T. Hungría, A. Castro, J. Galy, O. Peña, J. Tartaj, C. Moure, Mater. Chem. Phys. 133, 764–771 (2012)CrossRefGoogle Scholar
  33. 33.
    D. Gutiérrez, O. Peña, K. Ghanimi, P. Durán, C. Moure, J. Phys. Chem. Solids 63, 1975–1982 (2002)CrossRefGoogle Scholar
  34. 34.
    D. Gutierrez, O. Peña, P. Duran, J.C. Moure, Eur. Ceram. Soc. 22, 1257–1262 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of Applied PhysicsNorthwestern Polytechnical UniversityXi’anChina
  2. 2.School of Mechanical, Electrical and Information EngineeringShandong University (Weihai)WeihaiChina
  3. 3.State Key Laboratory of Solidification Processing, School of Materials Science and EngineeringNorthwestern Polytechnical UniversityXi’anChina

Personalised recommendations