Journal of Materials Science: Materials in Electronics

, Volume 28, Issue 17, pp 13201–13208 | Cite as

Construction and nonlinear optical characterization of CuO quantum dots doped Na2O–CaO–B2O3–SiO2 bulk glass

  • Yijun Zhang
  • Junwen Zhang
  • Yu Jin
  • Jiaqi Zhang
  • Guangcai Hu
  • Sai Lin
  • Rongrong Yuan
  • Xiaojuan Liang
  • Weidong Xiang


The spherical shape copper oxide (CuO) quantum dots (QDs) were successfully fabricated via copper basic calcium sodium borosilicate (Na2O–CaO–B2O3–SiO2) precursor obtained with a facile sol–gel technique. The microstructural analysis of doped QDs are systemically characterized, such as transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM) and X-ray photo-electron spectroscopy. And the results reveal that the CuO QDs with the small size are well dispersed doped in sodium calcium borosilicate glass. Remarkably, the CuO glass materials exhibit the good third-order optical nonlinear susceptibility χ(3) (1.379 × 10−12 esu), which was investigated by femto-second Z-scan technique at the wavelength of 1550 nm, pulse duration of 50 fs, repetition rate of 50 MHz. The glass hybrids displayed a reverse saturable absorption and self-focusing refraction performance. And the mechanism to explain the third-order nonlinearity of CuO glass may be predominantly originated from the surface plasmon resonance effect, the quantum confinement effect and partly from the thermal effect. Besides, it is interesting that the glass hybrids have significant nonlinear absorption effects that endow the material to the potential value of the application of optical limiting device.


Nonlinear Optical Property Quantum Confinement Effect Nonlinear Refractive Index Surface Plasmon Resonance Peak Nonlinear Absorption Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was financially supported by the National Nature Science Foundation of China (51472183 and 51672192).


  1. 1.
    H. Kind, H. Yan, B. Messer, M. Law, P. Yang, Adv. Mater. 14, 158–160 (2002)CrossRefGoogle Scholar
  2. 2.
    M. Ando, K. Kadono, M. Haruta, T. Sakaguchi, M. Miya, Nature 374, 625 (1995)CrossRefGoogle Scholar
  3. 3.
    R.S. Devan, R.A. Patil, J.H. Lin, Y.R. Ma, Adv. Funct. Mater. 22, 3326–3370 (2012)CrossRefGoogle Scholar
  4. 4.
    D.N. Wang, Y.N. Ning, K.T. Grattan, A.W. Palmer, K. Weir, J. Lightwave Technol. 12, 909–916 (1994)CrossRefGoogle Scholar
  5. 5.
    B. Boulanger, J. Zyss, International Tables for Crystallography Volume D (Springer, Netherlands, 2006), pp. 178–219CrossRefGoogle Scholar
  6. 6.
    L.W. Tutt, T.F. Boggess, Progr. Quantum Electron. 17, 299–338 (1993)CrossRefGoogle Scholar
  7. 7.
    J.M. Rondinelli, N.A. Spaldin, Adv. Mater. 23, 3363–3381 (2011)CrossRefGoogle Scholar
  8. 8.
    C. Zener, Phys. Rev. 81, 440 (1951)CrossRefGoogle Scholar
  9. 9.
    N.F. Mott, Adv. Phys. 13, 325–422 (1964)CrossRefGoogle Scholar
  10. 10.
    L. Polavarapu, V. Mamidala, Z. Guan, W. Ji, Q.H. Xu, Appl. Phys. Lett. 100, 023106 (2012)CrossRefGoogle Scholar
  11. 11.
    S.J. Ding, F. Nan, D.J. Yang, X.L. Liu, Y.L. Wang, L. Zhou, Z.H. Hao, Q.Q. Wang, Sci. Rep. 5, 9735 (2015)CrossRefGoogle Scholar
  12. 12.
    E.M. El-Giar, R.A. Said, G.E. Bridges, D.J. Thomson, J. Electrochem. Soc. 147, 586–591 (2000)CrossRefGoogle Scholar
  13. 13.
    J.G. Bednorz, K.A. Müller, Ten Years of Superconductivity (Springer, Netherlands, 1986), pp. 267–271Google Scholar
  14. 14.
    M.L. Liu, I.W. Chen, F.Q. Huang, L.D. Chen, Adv. Mater. 21, 3808–3812 (2009)CrossRefGoogle Scholar
  15. 15.
    R. Mohan, K. Krishnamoorthy, S.J. Kim, Solid State Commun. 152, 375–380 (2012)CrossRefGoogle Scholar
  16. 16.
    J. Zhong, W. Xiang, H. Zhao, W. Zhao, G. Chen, X. Liang, J. Alloys Compd. 537, 269–274 (2012)CrossRefGoogle Scholar
  17. 17.
    P.L. Taberna, S. Mitra, P. Poizot, P. Simon, J.M. Tarascon, Nat. Mater. 5, 567–573 (2006)CrossRefGoogle Scholar
  18. 18.
    B. Li, H. Cao, G. Yin, Y. Lu, J. Yin, J. Mater. Chem. 21, 10645–10648 (2011)CrossRefGoogle Scholar
  19. 19.
    P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, M. Powalla, Prog. Photovoltaics Res. Appl. 19, 894–897 (2011)CrossRefGoogle Scholar
  20. 20.
    J. Zhang, J. Liu, Q. Peng, X. Wang, Y. Li, Chem. Mater. 18, 867–871 (2006)CrossRefGoogle Scholar
  21. 21.
    R.B. Thompson, G. Zhengfang, M. Patchan, H. Chih-Chin, C.A. Fierke, Biosens. Bioelectron. 11, 557–564 (1996)CrossRefGoogle Scholar
  22. 22.
    S.B. Wang, C.H. Hsiao, S.J. Chang, K.T. Lam, K.H. Wen, S.C. Hung, S.J. Young, B.R. Huang, Sens. Actuators A 171, 207–211 (2011)CrossRefGoogle Scholar
  23. 23.
    B. Qian, Z. Shen, Langmuir 21, 9007–9009 (2005)CrossRefGoogle Scholar
  24. 24.
    A. Sayari, S. Hamoudi, Y. Yang, Chem. Mater. 17, 212–216 (2005)CrossRefGoogle Scholar
  25. 25.
    E.M. Vogel, J. Am. Ceram. Soc. 72, 719–724 (1989)CrossRefGoogle Scholar
  26. 26.
    N.P. Bansal, R.H. Doremus, Handbook of Glass Properties (Elsevier, New Delhi, 2013)Google Scholar
  27. 27.
    L. Chen, F. Chen, S. Dai, G. Tao, L. Yan, X. Shen, H. Ma, X. Zhang, Y. Xu, Mater. Res. Bull. 70, 204–208 (2015)CrossRefGoogle Scholar
  28. 28.
    M. Shahmiri, N.A. Ibrahim, N. Faraji, W.M. M. Yunus, N. Asim, N. Zainuddin, Phys. E 54, 109–114 (2013)CrossRefGoogle Scholar
  29. 29.
    A. Chen, G. Yang, H. Long, F. Li, Y. Li, P. Lu, Thin Solid Films 517, 4277–4280 (2009)CrossRefGoogle Scholar
  30. 30.
    A. Chen, G. Yang, H. Long, P. Lu, W. Zhang, H. Wang, Mater. Lett. 91, 319–322 (2013)CrossRefGoogle Scholar
  31. 31.
    W. Husinsky, A. Ajami, P. Nekvindova, B. Svecova, J. Pesicka, M. Janecek, Opt. Commun. 285, 2729–2733 (2012)CrossRefGoogle Scholar
  32. 32.
    C. Zheng, C. Wenzhe, Y. Xiaoyun, S. Cai, X. Xiao, Opt. Mater. 36, 982–987 (2014)CrossRefGoogle Scholar
  33. 33.
    Y.P. Sun, J.E. Riggs, Int. Rev. Phys. Chem. 18, 43–90 (1999)CrossRefGoogle Scholar
  34. 34.
    A. Bertrand, J. Carreaud, G. Delaizir, J.R. Duclère, M. Colas, J. Cornette, M. Vandenhende, V. Couderc, P. Thomas, J. Am. Ceram. Soc. 97, 163–172 (2014)CrossRefGoogle Scholar
  35. 35.
    W. Xiang, H. Gao, L. Ma, X. Ma, Y. Huang, L. Pei, X. Liang, ACS Appl. Mater. Interfaces 7, 10162–10168 (2015)CrossRefGoogle Scholar
  36. 36.
    M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J.E. Sipe, S. Chu, B.E. Little, D.J. Moss, Nat. Photon. 2, 737–740 (2008)CrossRefGoogle Scholar
  37. 37.
    M. Sheik-Bahae, M.P. Hasselbeck, Handb. Opt. 4, 16–1 (2000)Google Scholar
  38. 38.
    J.C. Dupin, D. Gonbeau, P. Vinatier, A. Levasseur, Phys. Chem. Chem. Phys. 2, 1319–1324 (2000)CrossRefGoogle Scholar
  39. 39.
    O. Akhavan, E. Ghaderi, J. Mater. Chem. 21, 12935–12940 (2011)CrossRefGoogle Scholar
  40. 40.
    B. Karthikeyan, S. Mohan, Mater. Lett. 57, 3789–3792 (2003)CrossRefGoogle Scholar
  41. 41.
    I. Ardelean, S. Cora, V. Ioncu, J. Optoelectron. Adv. Mater. 8, 1843–1847 (2006)Google Scholar
  42. 42.
    M. Sheik-Bahae, A.A. Said, T.H. Wei, D.J. Hagan, E.W. Van Stryland, IEEE J. Quantum Electron. 26, 760–769 (1990)CrossRefGoogle Scholar
  43. 43.
    Y.S. Tamgadge, V.G. Pahurkar, S.S. Talwatkar, A.L. Sunatkari, G.G. Muley, Appl. Phys. B 120, 373–381 (2015)CrossRefGoogle Scholar
  44. 44.
    T.M. Williams, D. Hunter, A.K. Pradhan, I.V. Kityk, Appl. Phys. Lett. 89, 043116 (2006)CrossRefGoogle Scholar
  45. 45.
    J. Ebothe, W. Gruhn, A. Elhichou, I.V. Kityk, R. Dounia, M. Addou, Opt. Laser Technol. 36, 173–180 (2004)CrossRefGoogle Scholar
  46. 46.
    L. Han, D. Yin, Q. Xu, X. Yang, X. Gao, X. Lu, H. Liu, J. Phys. D 49, 445307 (2016)CrossRefGoogle Scholar
  47. 47.
    P. Sridharan, T. Sreekanth, J. Park, R. Philip, J. Phys. Chem. C 119, 16314–16320 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Yijun Zhang
    • 1
  • Junwen Zhang
    • 1
  • Yu Jin
    • 1
  • Jiaqi Zhang
    • 1
  • Guangcai Hu
    • 1
  • Sai Lin
    • 1
  • Rongrong Yuan
    • 1
  • Xiaojuan Liang
    • 1
  • Weidong Xiang
    • 1
  1. 1.College of Chemistry and Materials EngineeringWenzhou UniversityWenzhouChina

Personalised recommendations