Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 28, Issue 17, pp 12977–12983 | Cite as

Influence of silica ratio on structural and optical properties of SiO2/TiO2 nanocomposites prepared by simple solid-phase reaction

  • M. Madani
  • K. Omri
  • N. Fattah
  • A. Ghorbal
  • X. Portier
Article
  • 166 Downloads

Abstract

TiO2/SiO2 (Ti–O–Si) nanocomposite were prepared by a simple solid-phase reaction under natural atmosphere at 500 °C after the incorporation of silica (SiO2) nanoparticles, in TiO2 with varying the percentage weight of silica in the mixture (20, 30 and 50%). X-ray diffraction (XRD) and transmission electron microscopy (TEM) were used to characterize the phase purity, particle size and morphology. UV–vis absorption spectroscopy and optical density measurements (DO) allowed us to investigate the optical properties of our samples and to determine some crucial parameters such as the band gap energy Eg and the optical density DO. By the same, the band gap energy Eg achieves higher values as well as the optical density decreases for all the used wavelengths. These observations results from the formation of the Ti–O–Si bond and the presence of amorphous silica around anatase, which would impede the growth of TiO2 particles. The internal microstructure thus obtained will perform the stability of our composite allowing an enhancement of optical, electrical and catalytic features of TiO2.

Keywords

TiO2 SiO2 Amorphous Silica Perfect Concordance Silica Ratio 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors would like to acknowledge contribution from Madani Salaheddine and Zarrouk Nafae for their collaboration.

References

  1. 1.
    G. Vidrich, J.F. Castagnet, H. Ferkel, Dispersion behavior of Al2O3 and SiO2 nanoparticles in nickel sulfamate plating baths of different compositions. J. Electrochem. Soc. 152, C294–C297 (2005)CrossRefGoogle Scholar
  2. 2.
    J. Zhai, X. Tao, Y. Pu, X.F. Zeng, J.F. Chen, Core/shell structured ZnO/SiO2 nanoparticles: preparation, characterization and photocatalytic property. J. Phys. 15, 2867 (2003)Google Scholar
  3. 3.
    X. Zhao, J. You, Y. Xie, H. Cao, X. Liu, Nanoporous SiO2/TiO2 composite coating for orthopedic application. Mater. Lett. 152, 53–56 (2015)CrossRefGoogle Scholar
  4. 4.
    Z.P. Fu, B.F. Yang, L. Li, W.W. Dong, C. Jia, W. Wu, An intense ultraviolet photoluminescence in sol–gel ZnO–SiO2 nanocomposites. J. Phys. 15, 2867 (2003)Google Scholar
  5. 5.
    Q. Yuan, N. Li, J.C. Tu, X.T. Li, R. Wang, T. Zhang, C.L. Shao, Preparation and humidity sensitive property of mesoporous ZnO–SiO2 composite. Sens. Actuators B 149, 413–419 (2010)CrossRefGoogle Scholar
  6. 6.
    E. Rahmani, A. Ahmadpour, M. Zebarjad, Tribological properties of multilayer nanostructure TiO2 thin film doped by SiO2. J. Sol-Gel Sci. Technol. 63, 65–71 (2012)CrossRefGoogle Scholar
  7. 7.
    J. Liu, F. Shi, D. Yang, Characterization of sol-gel-derived TiO2 and TiO2-SiO2 films for biomedical applications. J. Mater. Sci. Technol. 20, 550–554 (2004)Google Scholar
  8. 8.
    V. Tizjang, M. Montazeri-Pour, M. Rajabi, M. Kari, S. Moghadas, Surface modification of sol–gel synthesized TiO2 photo-catalysts for the production of core/shell structured TiO2–SiO2 nano-composites with reduced photo-catalytic activity. J. Mater. Sci. 26, 3008–3019 (2015)Google Scholar
  9. 9.
    I. Piwoński, K. Soliwoda, A. Kisielewska, R. Stanecka-Badura, K. Ka, The effect of the surface nanostructure and composition on the antiwear properties of zirconia–titania coatings. Ceram. Int. 39, 1111–1123 (2013)CrossRefGoogle Scholar
  10. 10.
    Ü.Ö.A. Arıer, Optical and structural properties of sol-gel derived brookite TiO2–SiO2 nano-composite films with different SiO2:TiO2 ratios. Optik 127, 6439–6445 (2016)CrossRefGoogle Scholar
  11. 11.
    G. Scannell, A. Koike, L. Huang, Structure and thermo-mechanical response of TiO2–SiO2 glasses to temperature. J. Non-Crystalline Solids 447, 238–247 (2016)CrossRefGoogle Scholar
  12. 12.
    A. Adamczyk, M. Rokita, The structural studies of Ag containing TiO2–SiO2 gels and thin films deposited on steel. J. Mol. Struct. 1114, 171–180 (2016)CrossRefGoogle Scholar
  13. 13.
    Y.Y. Peng, T.E. Hsieh, C.H. Hsu, White-light emitting ZnO–SiO2 nanocomposite thin films prepared by the target-attached sputtering method. Nanotechnology 17, 174–180 (2006)CrossRefGoogle Scholar
  14. 14.
    A. Marzec, M. Radecka, W. Maziarz, A. Kusior, Z. Pędzich, Structural, optical and electrical properties of nanocrystalline TiO2, SnO2 and their composites obtained by the sol–gel method. J. Eur. Ceram. Soc. 36(12), 2981–2989 (2016)CrossRefGoogle Scholar
  15. 15.
    L. Cheng, S. Qiu, J. Chen, J. Shao, S. Cao, A practical pathway for the preparation of Fe2O3 decorated TiO2 photocatalyst with enhanced visible-light photoactivity. Mater. Chem. Phys. 190, 53–61 (2017)CrossRefGoogle Scholar
  16. 16.
    C. Takai, F. Kawajiri, M. Fuji, Selective SnO2 deposition on inner/outer shell surface of hollow SiO2 nanoparticles by control of shell microstructure. Colloids Surf. 463, 78–84 (2014)CrossRefGoogle Scholar
  17. 17.
    K. Omri, L. El Mir, Effect of manganese concentration on photoluminescence properties of Zn2SiO4:Mn nanophosphor material. Superlattices Microstruct. 70, 24–32 (2014)CrossRefGoogle Scholar
  18. 18.
    K. Omri, I. Najeh, L. El Mir, Influence of annealing temperature on the microstructure and dielectric properties of ZnO nanoparticles. Ceram. Int. 42, 8940–8948 (2016)CrossRefGoogle Scholar
  19. 19.
    Y. Zhao, L. Chunzhong et al., Synthesis and optical properties of TiO2 nanoparticles. Mater. Lett. 61, 79–83 (2007)CrossRefGoogle Scholar
  20. 20.
    P.K. Khanna, N. Singh, S. Charan, Synthesis of nanoparticles of anatase TiO2 and preparation of its optical transparent film in PVA. Mater. Lett. 61, 4725–4730 (2007)CrossRefGoogle Scholar
  21. 21.
    C.L. Yeh, S.H. Yeh, H.K. Ma, Flame synthesis of titania particles from titanium tetraisopropoxide in premixed flames. Powder Technol. 145, 149 (2004)CrossRefGoogle Scholar
  22. 22.
    L. Zhou, S. Yan, et al., Preparation of TiO2–SiO2 film with high photocatalytic activity on PET substrate. Mater. Lett. 60, 396–399 (2006)CrossRefGoogle Scholar
  23. 23.
    R.A. Aziz, I. Sopyan, Synthesis of TiO2-SiO2 powder and thin film photocatalysts of sol-gel method. Int. J. Chem. 48, 951–957 (2009)Google Scholar
  24. 24.
    A. Nilchi, S. Janitabar-Darzi, S. Rasouli-Garmarodi, Sol–gel preparation of nanoscale TiO2/SiO2 composite for eliminating of Con Red Azo dye. Mater. Sci. Appl. 2, 476–480 (2011)Google Scholar
  25. 25.
    G. Calleja, D.P. Serrano, R. Sanz, P. Pizarro, A. Garcia, Study on the synthesis of high-surface-area mesoporous TiO in the presence of nonionic surfactants. Ind. Eng. Chem. Res. 43(10), 2485–2492 (2004)CrossRefGoogle Scholar
  26. 26.
    S.J. Kalita, S. Qiu, S. Verma, A quantitative study of the calcination and sintering of nanocrystalline titanium dioxide and its flexural strength properties. Mater. Chem. Phys. 109(2–3), 392–398 (2008)CrossRefGoogle Scholar
  27. 27.
    Y. Oral, E. Mensur, M.H. Aslan, E. Basaran, The preparation of copper(II) oxide thin films and the study of their microstructures and optical properties. Mater. Chem. Phys. 83, 140–144 (2004)CrossRefGoogle Scholar
  28. 28.
    H. Yamashita, Y. Ichihashi, M. Harada, M. Stewart, A. Fox, M. Anpo, Photocatalytic degradation of 1-octanol on anchored titanium oxide and on TiO powder catalysts. J. Catal. 158, 97–103 (1996)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • M. Madani
    • 1
  • K. Omri
    • 1
  • N. Fattah
    • 2
  • A. Ghorbal
    • 3
  • X. Portier
    • 4
  1. 1.Laboratoire de Physique des Matériaux et des Nanomatériaux Appliqués à l’Environnement, Faculté des Sciences de GabèsCité Erriadh Manara ZrigGabèsTunisia
  2. 2.Companie des Phosphates de Gafsa, Centre des Recherches de MetlaouiMetlaouiTunisia
  3. 3.ISSAT de GabèsGabèsTunisia
  4. 4.CIMAP CEA/CNRS/ENSICAEN/UCBNCaen Cedex 4France

Personalised recommendations