Journal of Materials Science: Materials in Electronics

, Volume 28, Issue 17, pp 12962–12966 | Cite as

Preparation, structure and dielectric properties of substrate-free BaTiO3 thin films by sol–gel method

  • Jinjin Li
  • Guisheng Zhu
  • Huarui Xu
  • Pan Wang
  • Yida Chen
  • Dongliang Yan
  • Aibing Yu


An innovative method of preparing substrate-free BaTiO3 thin films was proposed and used to demonstrate that the BaTiO3 thin films can be peeled off from the substrates. Structure, morphology and dielectric properties of these thin films were studied. The BaTiO3 thin films consist of a perovskite phase having a cubic symmetry and showed a dense and crack-free structure after being annealed at 800 °C. SEM and AFM results showed that the nano-structured BaTiO3 thin films were dense and crack-free with an average grain size of 60 ± 5 nm and the surface root-mean square (RMS) roughness was 6.83 nm. The dielectric measurements indicated that the substrate-free thin films annealed at a temperature of 800 °C possessed a dielectric constant of εr = 245 and loss tangent of tan δ = 0.057. The new method we put forward could effectively reduce the volume of a film capacitor without any decline in its dielectric properties, thus showing promise as a new approach for preparing embedded thin-film capacitors.


Dielectric Constant Dielectric Loss BaTiO3 Sacrificial Layer Polyvinyl Butyral 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was financially supported by the National Natural Science Foundation of China (Nos. 61540073), China Postdoctoral Science Project (Nos. 2015M580781), Guangxi Natural Science Foundation (Nos. 2016GXNSFAA380053), Guangxi Key Laboratory of Information Materials Foundation (Nos. 161014-Z).


  1. 1.
    R. Ashiri, A. Nemati, M.S. Ghamsari, Ceram. Int. 40, 8613–8619 (2014)CrossRefGoogle Scholar
  2. 2.
    F. He, W. Ren, G.H. Liang, P. Shi, X.Q. Wu, X.F. Chen, Ceram. Int. 39, 481–485 (2013)CrossRefGoogle Scholar
  3. 3.
    S. Riaz, S. Shamaila, B. Khan, S. Naseem, Surf. Rev. Lett. 15, 237–244 (2008)CrossRefGoogle Scholar
  4. 4.
    A.D. Franklin, Science 349, 704–715 (2015)CrossRefGoogle Scholar
  5. 5.
    S.H. Yu, L.X. Li, W.F. Zhang, Z. Sun, H.L. Dong, J. Am. Ceram. Soc. 98, 1121–1127 (2015)CrossRefGoogle Scholar
  6. 6.
    M. Yuffe, M. Mehalel, E. Knoll, J. Shor, T. Kurts, E. Altshuler, et al., IEEE J. Solid State Circ. 47, 194–205 (2012)CrossRefGoogle Scholar
  7. 7.
    J. Hupkes, J.I. Owen, S.E. Pust, E. Buntes, Chemphyschem 13, 66–73 (2012)CrossRefGoogle Scholar
  8. 8.
    H. Shimooka, S. Kohiki, M. Kuwabara, Iop 18 (2011), 3rd International Congress on Ceramics.Google Scholar
  9. 9.
    Z.G. Zang, A. Nakamura, J. Temmyo, Opt. Express 21, 11448–11456 (2013)CrossRefGoogle Scholar
  10. 10.
    R. Igreja, C.J. Dias, Sens. Actuators A 172, 392–399 (2011)CrossRefGoogle Scholar
  11. 11.
    Y.K. Liu, M.T. Lee, ACS Appl. Mater. Interfaces 6, 14576–14582 (2014)CrossRefGoogle Scholar
  12. 12.
    N. Mahmoodi, M.R. Vaezi, A. Kazemzadeh, J. Ceram. Process Res. 15, 312–315 (2014)Google Scholar
  13. 13.
    B. Lee, J.P. Zhang, Thin Solid Films 388, 107–113 (2001)CrossRefGoogle Scholar
  14. 14.
    P. Zheng, J.L. Zhang, Y.Q. Tan, C.L. Wang, Acta Mater. 60, 5022–5030 (2012)CrossRefGoogle Scholar
  15. 15.
    R. Ashiri, Metall. Mater. Trans. 45A, 4138–4154 (2014)CrossRefGoogle Scholar
  16. 16.
    K. Iwase, S. Kasuga, T. Kawai, Y. Matsushima, J. Sol–Gel Sci. Technol. 64, 170–177 (2012)CrossRefGoogle Scholar
  17. 17.
    H. Shimooka, S. Kohiki, M. Kuwabara, J. Ceram. Soc. Jpn. 118, 674–678 (2010)CrossRefGoogle Scholar
  18. 18.
    N. Suzuki, X.F. Jiang, R.R. Salunkhe, M. Osada, Y. Yamauchi, Chem.-Eur. J. 20, 11283–11286 (2014)CrossRefGoogle Scholar
  19. 19.
    R. Thomas, D.C. Dube, M.N. Kamalasanan, S. Chandra, Thin Solid Films 346, 212–225 (1999)CrossRefGoogle Scholar
  20. 20.
    H.X. Zhang, C.H. Kam, Y. Zhou, X.Q. Han, Y.L. Lam, Y.C. Chan, Mater. Chem. Phys. 63, 174–177 (2000)CrossRefGoogle Scholar
  21. 21.
    L. Curecheriu, M.T. Buscaglia, V. Buscaglia, Z. Zhao, L. Mitoseriu, Appl. Phys. Lett. 97, 242909 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Jinjin Li
    • 1
  • Guisheng Zhu
    • 1
  • Huarui Xu
    • 1
  • Pan Wang
    • 1
  • Yida Chen
    • 1
  • Dongliang Yan
    • 1
  • Aibing Yu
    • 2
  1. 1.Guangxi Key Laboratory of Information MaterialsGuilin University of Electronic TechnologyGuilinChina
  2. 2.Department of Chemical EngineeringMonash UniversityClaytonAustralia

Personalised recommendations