Advertisement

Journal of Materials Science: Materials in Electronics

, Volume 28, Issue 17, pp 12776–12783 | Cite as

Synthesis and luminescence properties of \({\text{Ca}}_{3} {\text{Y}}_{2} ({\text{Si}}_{3} {\text{O}}_{9} )_{2} :x{\text{Ce}}^{{3 + }}\) nanophosphor

  • N. G. Debelo
  • T. Senbeta
  • B. Mesfin
  • F. B. Dejene
Article
  • 76 Downloads

Abstract

Powder samples of calcium yttrium silicate, \({\text{Ca}}_{3} {\text{Y}}_{2} ({\text{Si}}_{3} {\text{O}}_{9} )_{2} :x{\text{Ce}}^{{3 + }}\) \((x=0,{~}0.01,\) \(0.02,\) \(0.04,\) \(0.08\), and \(0.16{\text{ mol}}\% )\), were prepared by a solution combustion technique using \(\text{CaN}{\text{O}_3},\text{YN}{\text{O}_3},\text{TEOS}\) and Urea as a starting materials. X-ray diffraction (XRD) results show monoclinic phase of the samples and the diffraction peaks match well with the standard JCPDS card (PDF#87–0459). The photoluminescence (PL) emission spectra of the doped samples monitored at excitation wavelength of 365 nm show a broad band extending from about 350 to 600 nm and this band can be ascribed to the allowed \(\left[ {{\text{Xe}}} \right]5{\text{d}}^{1} {\text{~}}\) to \(\left[ {{\text{Xe}}} \right]4{\text{f}}^{1} {\text{~}}\) transition of \({\text{Ce}}^{{3 + }}\). Moreover, the PL intensity increased for up to critical concentration of \(x=0.08\) mol% and then decreased. The reflectance spectra of the doped samples show a red shift in their optical band gap as compared to the host. The Thermoluminescence (TL) properties of the host material (\(x=0\) mol%) shows increment in the intensity of the glow curves for all the UV-doses applied. For the host, important TL kinetic parameters such as the activation energy (E), the frequency factor (s), and the order of kinetics (b) were determined by employing peak shape method. The introduction of \({\text{Ce}}^{{3 + }}\) in to the host material completely changed the TL properties of the samples.

Keywords

Host Material Glow Curve Deep State Glow Peak Standard JCPDS Card 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    S.K. Thakur, A.K. Gathania, Indian J. Phys. (2017). doi: 10.1007/s12648-017-0967-5 Google Scholar
  2. 2.
    S. Kumar, A.K. Gathania, A. Vij, R. Kumar, J. Electron. Mater. 46(4), 2085 (2017)CrossRefGoogle Scholar
  3. 3.
    Z. Du, et al., Bull. Mater. Sci. 38, 805 (2015)CrossRefGoogle Scholar
  4. 4.
    S. Kumar, A.K. Gathania, A. Vij, R. Kumar, Ceram. Int. 42(13), 14511 (2016)CrossRefGoogle Scholar
  5. 5.
    S. Thakur, N. Dhiman, A. Sharma, A.K. Gathania, J. Electron. Mater. 45(6), 2725 (2016)CrossRefGoogle Scholar
  6. 6.
    Y. Gao, et al., J. Electron. Mater. 46, 911 (2017)CrossRefGoogle Scholar
  7. 7.
    S. Thakur, A.K. Gathania, J. Mater. Sci. 27(2) 1988 (2016)Google Scholar
  8. 8.
    S. Thakur, A.K. Gathania, J. Electron. Mater. 44(10), 3444 (2015)CrossRefGoogle Scholar
  9. 9.
    B. Rajesh Kumar, J.B. Hymavathi, Asian. Ceram. Soc. (2017). doi: 10.1016/j.jascer.2017.02.001 Google Scholar
  10. 10.
    S. Thakur, A.K. Gathania, Indian J. Phys. 89(9), 973 (2015)CrossRefGoogle Scholar
  11. 11.
    Y. Parganiha, J. Kaur, V. Dubey, D. Chandrakar, Superlattice Microstruct. 77, 152 (2015)CrossRefGoogle Scholar
  12. 12.
    A. Dobrowolska, J. Solid State Chem. 184, 1707 (2011)CrossRefGoogle Scholar
  13. 13.
    M. Matthias, J. Thomas, J. Lumin. 155, 398 (2014)CrossRefGoogle Scholar
  14. 14.
    Z. Yang, H. Dong, X. Liang, C. Hou, L. Liu, F. Lu, Dalton Trans. 43, 11474 (2014)CrossRefGoogle Scholar
  15. 15.
    M. Müller, T. Jüstel, J. Lumin. 155, 398 (2014)CrossRefGoogle Scholar
  16. 16.
    M.T. Jose, S.R. Anishia, O. Annalakshmi, V. Ramasamy, Radiat. Meas. 46, 1026 (2011)CrossRefGoogle Scholar
  17. 17.
    S.W.S. Mckeever, Thermoluminescence of Solids, (Cambridge Solid State Science Series, London, 1988)Google Scholar
  18. 18.
    V. Pagonis, G. Kitis, C. Furetta, Numerical and Practical Exercises in Thermoluminecsnce. (Springer, USA, 2006)Google Scholar
  19. 19.
    K. Madhukumar, et al., Bull. Mater. Sci. 30, 527 (2007)CrossRefGoogle Scholar
  20. 20.
    S.-Y. Ting, et al., J. Nanomat. 2012, 1 (2012)CrossRefGoogle Scholar
  21. 21.
    B. Cullity, Elements of X-ray Diffraction, (Addison-Wesley Publishing, USA, 1956)Google Scholar
  22. 22.
    A. Dobrowolska, E. Zych, J. Solid State Chem 184, 1707 (2011)CrossRefGoogle Scholar
  23. 23.
    Z. Xin, et al., Chin. Phys. B 22, 097801 (2013)CrossRefGoogle Scholar
  24. 24.
    Y. Zhang, et al., Opt. Mater. Express, 2, 92 (2012)CrossRefGoogle Scholar
  25. 25.
    J. Zhou, Z. Xia, J. Lumin. 146, 22 (2014)CrossRefGoogle Scholar
  26. 26.
    D.L. Dexter, J. Chem. Phys. 21, 836 (1953)CrossRefGoogle Scholar
  27. 27.
    I. Shalish, et al., Phys. Rev. B 59, 9748 (1999)CrossRefGoogle Scholar
  28. 28.
    K.C. Yung, H. Liem, S.H. Choy, J. Phys. D 42, 185002 (2009)CrossRefGoogle Scholar
  29. 29.
    R. Shrivastava, et al., Bull. Mater. Sci. 37, 925 (2014)CrossRefGoogle Scholar
  30. 30.
    C.P. Furetta, Nucl. Instrum. Methods Phys. Res. 411, 417 (2000).Google Scholar
  31. 31.
    M. Prokic, Radiat. Prot. Dosim. 100, 265 (2002)CrossRefGoogle Scholar
  32. 32.
    N.E.-K.-A. El-Faramawy, Radiat. Phys. Chem. 58, 9 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • N. G. Debelo
    • 1
  • T. Senbeta
    • 1
  • B. Mesfin
    • 1
  • F. B. Dejene
    • 2
  1. 1.Department of PhysicsAddis Ababa UniversityAddis AbabaEthiopia
  2. 2.Department of PhysicsUniversity of the Free StatePhuthaditjhabaSouth Africa

Personalised recommendations