Advertisement

Electrospinning fabrication and photocatalytic activity of Bi2WO6 nanofibers

Article

Abstract

Bi2WO6 nanofibers were synthesized by an electrospinning process. The phase, microstructure and photocatalytic performance of the obtained Bi2WO6 photocatalysts were investigated. The XRD patterns and FTIR spectrum suggest that Bi2WO6 nanofibers have the orthorhombic phase. The SEM and TEM images show that Bi2WO6 nanofibers have a rough surface and a large number of hollow caves. The Bi2WO6 hierarchical nanofibers show a high decomposition efficiency of MO under light irradiation. The higher photocatalytic activity of Bi2WO6 nanofibers results from the large specific surface area. The large specific surface area provides more surface active sits and makes an easier charge carrier transport.

Keywords

Photocatalytic Activity Methyl Orange Light Irradiation Methyl Orange Solution Na2WO4 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    J. Kou, C. Lu, J. Wang, Y. Chen, Z. Xu, R.S. Varma, Chem. Rev. 117, 1445 (2017)CrossRefGoogle Scholar
  2. 2.
    T.A. Nguyen, R.-S. Juang, Chem. Eng. J. 219, 109 (2013)CrossRefGoogle Scholar
  3. 3.
    S. Hong, P.X. Gao, Adv. Energy Mater. 6, 1600683 (2016)CrossRefGoogle Scholar
  4. 4.
    A. Fujishima, Nature 238, 37 (1972)CrossRefGoogle Scholar
  5. 5.
    H. Tanaka, M. Misono, Curr. Opin. Solid State Mater. Sci. 5, 381 (2001)CrossRefGoogle Scholar
  6. 6.
    T. Li, T. Liu, H. Wei, X. Gu, J. Mater. Sci.: Mater. Electron. 27, 3546 (2016)Google Scholar
  7. 7.
    L. Zhang, N. Li, H. Jiu, Q. Zhang, J. Mater. Sci.: Mater. Electron. 27, 2748 (2016)Google Scholar
  8. 8.
    Z. Zarghami, M. Ebadi, K. Motevalli, M. Aliabadi, J. Mater. Sci.: Mater. Electron. 27, 1087 (2016)Google Scholar
  9. 9.
    M. Su, H. Liu, J. Ma, J. Mater. Sci.: Mater. Electron. 27, 10707 (2016)Google Scholar
  10. 10.
    Z. Liu, S. Guo, C. Hong, Z. Xia, J. Mater. Sci.: Mater. Electron. 27, 2146 (2016)Google Scholar
  11. 11.
    X. Fang, X. Chen, Z. Zhu, J. Mater. Sci.: Mater. Electron. 28, 474 (2017)Google Scholar
  12. 12.
    N.D. Phu, L.H. Hoang, X.B. Chen, M.H. Kong, H.C. Wen, W.C. Chou, J. Alloy. Compd. 647, 123 (2015)CrossRefGoogle Scholar
  13. 13.
    S. Sriwichai, H. Ranwongsa, K. Wetchakun, S. Phanichphant, N. Wetchakun, Superlattices Microstruct. 76, 362 (2014)CrossRefGoogle Scholar
  14. 14.
    J. Lu, M. Liu, S. Zhou, X. Zhou, Y. Yang, Dyes Pigments 136, 1 (2017)CrossRefGoogle Scholar
  15. 15.
    Q. Xiao, Z. Si, J. Zhang, C. Xiao, X. Tan, J. Hazard. Mater. 150, 62 (2008)CrossRefGoogle Scholar
  16. 16.
    Y. Yang, B. Liu, Y. Zhang, X. LV, L. Wei, X. Wang, Superlattices Microstruct. 90, 227 (2016)CrossRefGoogle Scholar
  17. 17.
    Y. Miao, P. Wang, H. Guan, Y. Chen, J. Mater. Sci.: Mater. Electron. 27, 10798 (2016)Google Scholar
  18. 18.
    Z. Lin, J. Li, Z. Zheng, J. Yan, P. Liu, C. Wang, G. Yang, ACS Nano 9, 7256 (2015)CrossRefGoogle Scholar
  19. 19.
    R.A. Roca, A.F. Gouveia, P.S. Lemos, L. Gracia, J. Andrés, E. Longo, Inorg. Chem. 55, 8661 (2016)CrossRefGoogle Scholar
  20. 20.
    G. Liu, S. Liu, Q. Lu, H. Sun, Z. Xiu, Ind. Eng. Chem. Res. 53, 13023 (2014)CrossRefGoogle Scholar
  21. 21.
    A. Greiner, J.H. Wendorff, Angew. Chem. Int. Edit. 46, 5670 (2007)CrossRefGoogle Scholar
  22. 22.
    L. Yang, D. Chu, L. Wang, Mater. Lett. 160, 246 (2015)CrossRefGoogle Scholar
  23. 23.
    M.J. Kim, Y.I. Choi, S.W. Joo, M. Kang, Y. Sohn, Ceram. Int. 40, 16051 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.School of Mechanical EngineeringNorth China University of Water Resources and Electric PowerZhengzhouChina

Personalised recommendations