Photoluminescence properties of KBaY(BO3)2:Eu3+/Bi3+ phosphors excited by ultraviolet and blue light

  • Siyu Xia
  • Anxiang Guan
  • Fangfang Gao
  • Anjie Fu
  • Yonghui Xu
  • Yingbin Meng
  • Liya Zhou


A series of Eu3+-doped KBaY(BO3)2 phosphors was synthesized through a conventional solid-state reaction method. X-ray power diffraction and photoluminescence spectra were used to characterize the phosphors. The KBaY(BO3)2:Eu3+ phosphor showed an intense orange-red emission at 591 nm and red emission at 610 nm under near-UV (392 nm) and blue-light (463 nm) excitation. These results suggest that KBaY(BO3)2:Eu3+ phosphors are suitable for near-UV or blue-light excitation. Compared with Eu3+ single-doped samples, Eu3+ and Bi3+ co-doped samples possess a peak value of 310 nm, which implies the energy transfer between Bi3+ and Eu3+. Moreover, the energy-transfer mechanism between Eu3+ and Bi3+ in KBaY(BO3)2 was explored, and the mechanism was found to be a dipole–quadrupole interaction. The emission peak intensities of the KBaY(BO3)2:Eu3+ phosphor at 591 and 610 nm are significantly enhanced with the co-activator Bi3+ ion.


Quadrupole Interaction Energy Transfer Mechanism Sensitization Agent Emission Peak Intensity Energy Transfer Probability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by grants from the Science Foundation of Guangxi Province (No. 2015GXNSFAA139025); the Students Innovation and Entrepreneurship Training Program of Guangxi University (201610593040).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human and animal participants

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. 1.
    M.J. Lederer, M. Hildebrandt, V.Z. Kolev, B. Luther-Davies, B. Taylor, J. Dawes, P. Dekker, J. Piper, H.H. Tan, C. Jagadish, Opt. Lett. 436, 27 (2002)Google Scholar
  2. 2.
    F. Druon, F. Balembois, P. Georges, A. Brun, A. Courjaud, C. Hönninger, F. Salin, A. Aron, F. Mougel, G. Aka, D. Vivien, Opt. Lett. 25, 423 (2000)CrossRefGoogle Scholar
  3. 3.
    R. Norrestam, M. Nygren, J.O. Bovin, Chem. Mater. 4, 737 (1992)CrossRefGoogle Scholar
  4. 4.
    A.D. Mills, Inorg. Chem. 1, 960 (1962)CrossRefGoogle Scholar
  5. 5.
    J.H. Gao, L.M. Song, X.Y. Hu, D.K. Zhang, Solid State Sci. 13, 115 (2011)CrossRefGoogle Scholar
  6. 6.
    Z.P. Lian, J.F. Sun, L.J. Zhang, D.Z. Shen, G.Q. Shen, X.Q. Wang, Q.F. Yan, RSC Adv 3, 16534 (2013)CrossRefGoogle Scholar
  7. 7.
    L.L. Han, Y.H. Wang, Y.Z. Wang, J. Zhang, Y. Tao, J. Alloys Compd. 551, 485 (2013)CrossRefGoogle Scholar
  8. 8.
    Z.G. Xia, X.M. Wang, Y.X. Wang, L.B. Lao, X.P. Jing, Inorg. Chem 50, 10134 (2011)CrossRefGoogle Scholar
  9. 9.
    H. Jing, C.F. Guo, G.G. Zhang, X.Y. Su, Z. Yang, J.H. Jeong, J. Mater. Chem 22, 13612 (2012)CrossRefGoogle Scholar
  10. 10.
    A. Pabst, Am. Miner. 59, 353 (1974)Google Scholar
  11. 11.
    H. Effenberger, H. Langhof, Acta. Cryst. C. 40, 1299 (1984)CrossRefGoogle Scholar
  12. 12.
    H. Suo, C.F. Guo, J.M. Zheng, B. Zhou, C.G. Ma, X.Q. Zhao, T. Li, P. Guo, E.M. Goldys, ACS Appl. Mater. Interfaces 8, 30312 (2016)CrossRefGoogle Scholar
  13. 13.
    M.L. Zhao, G.S. Li, J. Zheng, L.P. Li, H. Wang, L.S. Yang, CrystEngComm 13, 6251 (2011)CrossRefGoogle Scholar
  14. 14.
    J. Zhao, C.F. Guo, T. Li, X.Y. Su, N.M. Zhang, J.Y. Chen, Dyes Pigment. 132, 159 (2016)CrossRefGoogle Scholar
  15. 15.
    G.R. Dillip, B.D.P. Raju, J. Alloys Compd. 540, 67 (2012)CrossRefGoogle Scholar
  16. 16.
    D.L. Dexter, J.H. Schulman, J. Chem. Phys. 22, 1063 (1954)CrossRefGoogle Scholar
  17. 17.
    B.N. Mahalley, S.J. Dhoble, R.B. Pode, G. Alexander, Appl. Phys. A. 70, 39 (2000)CrossRefGoogle Scholar
  18. 18.
    X.Q. Zeng, S.J. Im, S.H. Jang, Y.M. Kim, H.B. Park, S.H. Song, H. Hatanaka, G.Y. Kim, S.G. Kim, J. Lumin. 121, 1 (2006)CrossRefGoogle Scholar
  19. 19.
    R. Reisfeld, E. Greenberg, R. Velapoldi, J. Chem. Phys. 56, 1698 (1972)CrossRefGoogle Scholar
  20. 20.
    B. Han, P.J. Li, J. Zhang, H.Z. Shi, J. Lumin. 155, 15 (2014)CrossRefGoogle Scholar
  21. 21.
    H. Zhou, Y. Jin, M. Jiang, Q. Wang, X. Jiang, Dalton Trans. 44, 1102 (2015)CrossRefGoogle Scholar
  22. 22.
    J.P. Su, X.Y. Mi, J.C. Sun, L.X. Yang, C.L. Hui, L.P. Lu, Z.H. Bai, X.Y. Zhang, J. Mater. Sci. 52, 782 (2017)Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Siyu Xia
    • 1
  • Anxiang Guan
    • 1
  • Fangfang Gao
    • 1
  • Anjie Fu
    • 1
  • Yonghui Xu
    • 1
  • Yingbin Meng
    • 1
  • Liya Zhou
    • 1
  1. 1.School of Chemistry and Chemical EngineeringGuangxi UniversityNanningChina

Personalised recommendations