Influence of Mn dopant concentration on film thickness, structural, morphological, compositional and optical properties of zinc oxide thin films

  • A. Dhanalakshmi
  • S. Thanikaikarasan
  • B. Natarajan


Thin films of zinc oxide (ZnO) and manganese doped zinc oxide (ZnO:Mn) have been prepared on glass substrates by the method of successive ionic layer adsorption reaction (SILAR) technique. X-ray diffraction pattern revealed that the prepared films found to exhibit hexagonal structure with preferential orientation along (101) plane. Scanning electron microscopic analysis showed the appearance of needle shaped flower like grains for ZnO and ZnO:Mn. The value of band gap is found to be in the range between 3.01 and 3.26 eV. Photoluminescence spectroscopic analysis showed that increase in value of peak intensity is observed for ZnO:Mn than ZnO.


Prepared Film Stylus Profilometry Successive Ionic Layer Adsorption Reaction Manganese Dope Zinc Oxide Atomic Packing Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Y.F. Nicolau, Appl. Surf. Sci. 22–23(2), 1061–1074 (1985)CrossRefGoogle Scholar
  2. 2.
    S.T. Shishiyanu, T.S. Shishiyanu, O.I. Lupan, Sens. Actuators B 107, 379–386 (2005)CrossRefGoogle Scholar
  3. 3.
    E. Fortunato, A. Goncalves, A. Marques, A. Viana, H. Aguas, L. Pereira, I. Ferreira, P. Vilarinho, R. Martins, Surf. Coat. Technol. 20, 180–181 (2004)Google Scholar
  4. 4.
    D.M. Bagnall, Y.F. Chen, Z. Zhu, T. Yao, S. Koyama, M.Y. Shen, T. Goto, Appl. Phys. Lett. 70, 2230–2232 (1997)CrossRefGoogle Scholar
  5. 5.
    S.C. Lyu, Y. Zhang, H. Ruh, H.J. Lee, H.W. Shim, E.K. Suh, C.J. Lee, Chem. Phys. Lett. 363, 134–138 (2002)CrossRefGoogle Scholar
  6. 6.
    Y.G. Wang, C. Yuen, S.P. Lau, S.F. Yu, B.K. Tay, Chem. Phys. Lett. 377(3), 329–332 (2003)CrossRefGoogle Scholar
  7. 7.
    W.T. Chiou, W.Y. Wu, J.M. Ting, Diam. Relat. Mater. 12, 1841–1844 (2003)CrossRefGoogle Scholar
  8. 8.
    M.L. de la Olvera, A. Maldonado, R. Asomoza, M. Meléndez-Lira, Solar Energy Mater. Solar Cells 71, 61–71 (2002)CrossRefGoogle Scholar
  9. 9.
    M. Fahoume, Solar Energy Mater. Solar Cells 90, 1437–1444 (2006)CrossRefGoogle Scholar
  10. 10.
    A. Goktas, F. Aslan, A. Tumbul, S.H. Gunduz, Ceram. Int. 43, 704–713 (2017). doi: 10.1016/j.ceramint.2016.09.217 CrossRefGoogle Scholar
  11. 11.
    G. Vijayaprasath, R. Murugan, G. Ravi, T. Mahalingam, Y. Hayakawa, Appl. Surf. Sci. 313, 870–876 (2014)CrossRefGoogle Scholar
  12. 12.
    N. Matsunami, M. Itoh, M. Kato, S. Okayasu, M. Sataka, H. Kakiuchida, Appl. Surf. Sci. 350, 31–37 (2015)CrossRefGoogle Scholar
  13. 13.
    U. Ilyas, P. Lee, T.L. Tan, R. Chen, A.W. Anwar, S. Zhang, H.D. Sun, R.S. Rawat, Appl. Surf. Sci. 387, 461–468 (2016). doi: 10.1016/j.apsusc.2016.06.138 CrossRefGoogle Scholar
  14. 14.
    S. Mondal, S.R. Bhattacharyya, P. Mitra, Bull. Mater. Sci. 36(2), 223–229 (2013)CrossRefGoogle Scholar
  15. 15.
    S. Senthilkumar, K. Rajendran, S. Banerjee, T.K. Chini, V. Sengodan, Mater. Sci. Semicond. Process. 11, 6 (2008)CrossRefGoogle Scholar
  16. 16.
    S.E. RamÃrez, L.A. GarcÃa-Cerda, L.A. GonzÃjlez, Superlattices Microstruct. 100, 409-417 (2016). doi: 10.1016/j.spmi.2016.09.049 Google Scholar
  17. 17.
    L.S.M. Pawar, B.S. Pawar, J.H. Kim, O.S. Joo, C.D. Lokhande, Curr. Appl. Phys. 11, 117 (2011)CrossRefGoogle Scholar
  18. 18.
    S. Thanikaikarasan, T. Mahalingam, M. Raja, S. Velumani, Mater. Sci. Semicond. Process. 37, 215–222 (2015)CrossRefGoogle Scholar
  19. 19.
    B. Bharathi, S. Thanikaikarasan, P. Kollu, P. V. Chandrasekar, K. Sankaranarayanan, X. Sahaya Shajan, J. Mater. Sci. 25:5338–5344 (2014)Google Scholar
  20. 20.
    R. Karmakar, S.K. Neogi, A. Banerjee, S. Bandyopadhyay, Appl. Surf. Sci. 263, 671–677 (2012)CrossRefGoogle Scholar
  21. 21.
    P. Singh, A. Kaushal, D. Kaur, J. Alloys Compd. 471, 11 (2009)CrossRefGoogle Scholar
  22. 22.
    C. Amutha, S. Thanikaikarasan, V. Ramadas, B. Natarajan, Optik 126, 5748–5752 (2015)CrossRefGoogle Scholar
  23. 23.
    S. Thanikaikarasan, T. Mahalingam, K. Sundarama, A. Kathalingam, Y.D. Kim, T. Kim, Vacuum 83,1066–1072 (2009)CrossRefGoogle Scholar
  24. 24.
    U. Ilyas, R.S. Rawat, Y. Wang, T.L. Tan, P. Lee, R. Chen, H.D. Sun, F. Li, S. Zhang. Appl. Surf. Sci. 258, 6373–6378 (2012)CrossRefGoogle Scholar
  25. 25.
    W. Rizwan, K. Young-Soon, M. Amrita, Y. Soon-I, S.H. Hyung-Shik, J. Nanoscale Res. Lett. 15, 1675–1681 (2010)Google Scholar
  26. 26.
    T. Szorenyi, L.D. Laude, I. Bertoti, Z. Kantor, Z. Geretovszky, J. Appl. Phys. 78, 6211–6219 (1995)CrossRefGoogle Scholar
  27. 27.
    R. Viswanathan, S. Sapra, S. Gupta, B. Satpati, P.V. Satyam, B.N. Dev, D.D. Sarma, J. Phys. Chem. B 108, 6303 (2004)CrossRefGoogle Scholar
  28. 28.
    S. Husain, L. Alkhtaby, E. Giorgetti, A. Zoppi, M.M. Miranda, J. Lumin. 145, 132–137 (2014)CrossRefGoogle Scholar
  29. 29.
    C.R. Marotti, P. Giorgi, G. Machado, E.A. Dalchiele, Solar Energy Mater. Solar Cells 90, 2356–2361 (2006)CrossRefGoogle Scholar
  30. 30.
    K. Sharda, K. Jayanthi, S. Chawla, Appl. Surf. Sci. 256, 2630–2635 (2010)CrossRefGoogle Scholar
  31. 31.
    S. Fujihara, C. Sasaki, T. Kimura, J. Eur. Ceram. Soc. 21, 2109 (2001)CrossRefGoogle Scholar
  32. 32.
    P.D. Cozzoli, M.L. Curri, A. Agostiano, G. Leo, M. Lomascolo, J. Am. Chem. Soc. 47, 14539–14548 (2003)CrossRefGoogle Scholar
  33. 33.
    Y. Guo, X. Cao, X. Lan, C. Zhao, X. Xue, Y. Song, J. Phys. Chem. C 112, 8832 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Research and Development CenterBharathiar UniversityCoimbatoreIndia
  2. 2.Post Graduate and Research Department of PhysicsRaja Dorai Singam Government Arts CollegeSivagangaiIndia
  3. 3.Department of PhysicsShanmuganathan Engineering CollegeThirumayamIndia

Personalised recommendations