Embedded nonlinear passive components on flexible substrates for microelectronics applications

  • Dipankar Ghosh


This paper describes nonlinear dielectric composite passive components on flexible metallic substrates for transient protection of electronic devices, most notably against electrostatic discharge (ESD) and electrical overstress (EOS) conditions. In this case, the passive device comprises a polymer composite that contains nonlinear inorganic fillers, an electric field switchable dielectric ceramic Calcium Copper Titanate (CaCu3Ti4O12, CCT), in a metal insulator metal (MIM) configuration. Compatibility with PCB (printed circuit board) in line processing is demonstrated since the fabrication process described is a relatively low temperature process. Advantageously, the construction of such components are such that they can be embedded within a PCB (printed circuit board), thereby allowing miniaturization of the circuit design and can potentially be adopted in an industrial roll to roll manufacturing process. The dielectric characteristics of the CCT filler polymer composites are compared with well-known high dielectric constant Barium Titanate filler polymer composites for capacitor applications. Theoretical models based on effective medium theory are used to predict the dielectric properties of the CCT epoxy composites as a function of filler loading fractions. Maxwell Garnett model was found to provide the best fit to experimental data.


Epoxy Composite Dielectric Loss Tangent Metal Insulator Metal Effective Dielectric Constant Metal Insulator Metal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The author would like to acknowledge useful discussions with Rui Yang and Grace Jiang and would like to thank Myles Brostrom for XRD and Jeff Payne for SEM.


  1. 1.
    Y. Rao, S. Ogitani, P. Kohl, C.P. Wong, J. Appl. Polym. Sci 83, 1084 (2001)CrossRefGoogle Scholar
  2. 2.
    J.P. Maria, K. Cheek, S. Streiffer, S.H. Kim, G. Dunn, A. Kingon, J. Am. Ceram. Soc. 84(10), 2436 (2001)CrossRefGoogle Scholar
  3. 3.
    S. Liang, S.R. Chong, E.P. Giannelis, Proceedings of the 48th Electronic Components and Technology Conference. p. 171 (1998)Google Scholar
  4. 4.
    J.S. Peiffer, Proc. of IPC Expo. p. 2231 (2009)Google Scholar
  5. 5.
    J.S. Peiffer, Proc. of IPC Expo, p. 1087 (2007)Google Scholar
  6. 6.
    D. Ghosh, S.P. Maki, C. Lyons, S.D. Theiss, R.R. Owings, IEEE Trans. Compon. Packag. Manuf. Technol. 6, 941 (2016)CrossRefGoogle Scholar
  7. 7.
    C. Duvvury, A. Amerasekera, Proc. IEEE 81(5), 690 (1993)CrossRefGoogle Scholar
  8. 8.
    E.J Harris, T. Vyas, T. Pachla, J.A. Colby, “Direct application voltage variable material, devices employing same and methods of manufacturing such devices”, US Patent 7183891 B2 (2007)Google Scholar
  9. 9.
    L. Kosowsky, “Methods for fabricating current-carrying structures using voltage switchable dielectric materials”, US Patent 8117743 B2 (2012)Google Scholar
  10. 10.
    D. Ghosh, G. Jiang, R. Yang, “Composite diode, electronic device, and methods of making the same”, US Patent 20130240860 A1 (2013)Google Scholar
  11. 11.
    J.F Ihlefeld, J.P Maria, W. Borland, J. Mater. Res. 20(10), 2838 (2005)CrossRefGoogle Scholar
  12. 12.
    J. Nath, D. Ghosh, J.-P. Maria, A.I. Kingon, W. Fathelbab, P.D. Franzon, M.B. Steer, IEEE Trans. Microw. Theory Tech. 53(9), 2707 (2005)CrossRefGoogle Scholar
  13. 13.
    T. Dechakupt, S.W. Ko, S.G. Lu, C.A. Randall, S.T. McKinstry, J. Mater. Sci. 46(1), 136 (2011)CrossRefGoogle Scholar
  14. 14.
    D. Ghosh, B. Laughlin, J. Nath, A.I. Kingon, M.B. Steer, J.-P. Maria, Thin Solid Films 496(2), 669 (2006)CrossRefGoogle Scholar
  15. 15.
    M.A. Subramanian, D. Li, N. Duan, B.A. Reisner, A.W. Sleight, J. Solid State Chem. 151, 323 (2000)CrossRefGoogle Scholar
  16. 16.
    D.C. Sinclair, T.B. Adams, F.D. Morrison, A.R. West, Appl. Phys. Lett. 80, 2153 (2002)CrossRefGoogle Scholar
  17. 17.
    A.R. West, T.B. Adams, F.D. Morrison, D.C. Sinclair, J. Eur. Ceram. Soc. 24, 439 (2004)CrossRefGoogle Scholar
  18. 18.
    M.J. Pan, B.A. Bender, J. Am. Ceram. Soc. 88(9), 2611 (2005)CrossRefGoogle Scholar
  19. 19.
    M.S.D. Satia, N. Arshad, N. Jaafar, J. Mater. Sci. 26(10), 8118 (2015)Google Scholar
  20. 20.
    S.Y. Chung, I.D. Kim, S.J.L. Kang, Nat. Mater. 3, 774 (2004)CrossRefGoogle Scholar
  21. 21.
    D. Ghosh, K. Budd, N. Somasiri, G. Jiang, B. Givot, “Compositions having non-linear current-voltage characteristics”, US Patent 8435427 B2, (2013)Google Scholar
  22. 22.
    A. Biswas, I.S. Bayer, P.C. Karulkar, A. Tripathi, D.K. Avasthi, M.G. NortonSzczech, J.B. Szczech, Appl. Phys. Lett. 91(21), 212902 (2007)CrossRefGoogle Scholar
  23. 23.
    E.Q. Huang, J. Zhao, J.W. Zha, L. Zhang, R. J Liao, Z.M. Dang, J. Appl. Phys. 115(19), 194102 (2014)CrossRefGoogle Scholar
  24. 24.
    K. Wakino, T. Okada, N. Yoshida, K. Tomono, J. Am. Ceram. Soc. 76, 2588 (1993)CrossRefGoogle Scholar
  25. 25.
    J.E. Spanier, I.P. Herman, Phys. Rev. B 61(15), 10437 (2000)CrossRefGoogle Scholar
  26. 26.
    N. Jayasundere, B.V. Smith, J. Appl. Phys. 73, 2462 (1993)CrossRefGoogle Scholar
  27. 27.
    Y. Rao, J. Qu, T. Marinis, C.P Wong, IEEE Trans. Compon. Packag. Manuf. Technol. 23, 4 (2000)Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.3M Corporate Research LaboratorySaint PaulUSA

Personalised recommendations