Advertisement

Photocatalytic and antibacterial activities of hydrothermally prepared CdO nanoparticles

  • K. Karthik
  • S. Dhanuskodi
  • C. Gobinath
  • S. Prabukumar
  • S. Sivaramakrishnan
Article

Abstract

CdO nanoparticles (NPs) were synthesized (hydrothermal) with cadmium acetate and ammonium hydroxide as starting materials and characterized by XRD, FE-SEM and FTIR. It exhibits face centred cubic structure with an average crystallite size of 43 nm and the lattice strain (W–H plot) is 0.0029. The surface morphological image appears particle like structure (150 nm). The vibrational stretching mode of Cd–O is 620 cm−1 whereas micro Raman reveals the overtone at 389 cm−1. The optical energy bandgap is found to be 2.47 eV from the UV–Vis spectra. Five emission peaks were recorded at 360, 429, 488, 527 and 640 nm upon excited at 290 nm. The SHG efficiency is 0.84 times of KDP. The photocatalytic performance has been evaluated of the CdO NPs for the degradation of methylene blue under sunlight irradiation. CdO NPs were screened for their in vitro antibacterial activity against human pathogens such as Gram negative (Escherichia coli, Pseudomonas aeruginosa, Proteus vulgaris) and Gram positive (Staphylococcus aureus, Enterococcus faecalis, Bacillus subtilis) bacteria has been investigated.

Keywords

Methylene Blue Photocatalytic Activity Second Harmonic Generation Cadmium Acetate Second Harmonic Generation Efficiency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

One of the authors (KK) thanks the University Grants Commission, New Delhi, for the UGC-BSR fellowship.

References

  1. 1.
    L.A. Saghatforoush, R. Mehdizadeh, S. Sanati, M. Hasazadeh, Synth. React. Inorg. Metal Org. Nano Metal Chem. 42, 1285–1290 (2012)CrossRefGoogle Scholar
  2. 2.
    X.F. Cheng, W.H. Leng, D.P. Liu, J.Q. Zhang, C.N. Cao, Chemosphere 68, 1976–1984 (2007)CrossRefGoogle Scholar
  3. 3.
    F. Namvar, F. Beshkar, M.S. Niasari, J. Mater. Sci. (2017). doi: 10.1007/s10854-017-6499-0 Google Scholar
  4. 4.
    D. Sathyaraj, R. Jayaprakash, T. Prakash, S. Kumar, G. Neri, T. Krishnakumar, Appl. Sur. Sci. 266, 268–271 (2013)CrossRefGoogle Scholar
  5. 5.
    Y. Jia, X.-Y. Yu, T. Luo, J.-H. Liu, X.-J. Huang, RSC Adv 2, 10251–10254 (2012)CrossRefGoogle Scholar
  6. 6.
    A. Azam, A.S. Ahmed, M. Oves, M.S. Khan, S.S. Habib, A. Memic, Int. J. Nanomed. 7, 6003–6009 (2012)CrossRefGoogle Scholar
  7. 7.
    Z. Guo, L. Minqiang, J. Liu, Nanotechnology 19, 245611–245618 (2008)CrossRefGoogle Scholar
  8. 8.
    X.S. Peng, X.F. Wang, Y.W. Wang, C.Z. Wang, G.W. Meng, L.D. Zhang, J. Phys. D. 35, L1–l4 (2002)CrossRefGoogle Scholar
  9. 9.
    V. Eskizeybek, A. Aver, M. Chhowalla, Cryst. Res. Technol. 46, 1093–1100 (2011)CrossRefGoogle Scholar
  10. 10.
    D.H. Fan, J. Cryst. Growth 311, 2300–2304 (2009)CrossRefGoogle Scholar
  11. 11.
    N.C.S. Selvam, R.T. Kumar, K. Yogeenth, L.J. Kennedy, G. Sekaran, J.J. Vijaya, Powder Tech. 211, 250–255 (2011)CrossRefGoogle Scholar
  12. 12.
    Y. Mingfu, H. Zhong, W. Zheng, L. Rui, L. Yongfang, Langmuir 23, 9064–9068 (2007)CrossRefGoogle Scholar
  13. 13.
    M. Lashanizadegan, H. Mirzadeh, J. Ceram. Process Res. 13, 389–391 (2012)Google Scholar
  14. 14.
    Z.-X. Yang, W. Zhong, Y.-X. Yin, D. Xin, Y. Deng, A. Chaktong, Y.-W. Du, Nanoscale Res. Lett. 5, 961–965 (2010)CrossRefGoogle Scholar
  15. 15.
    T. Krishnakumar, R. Jayaprakash, T. Prakash, D. Sathyaraj, N. Donato, S. Licoccia, M. Latino, A. Stassi, G. Neri, Nanotech 22, 325501–325508 (2011)CrossRefGoogle Scholar
  16. 16.
    D. Kelman, Y. Kashman, E. Rosenberg, M. Ilan, I. Iirach, Y. Loya, Aquat. Microb. Ecol. 24, 9–16 (2001)CrossRefGoogle Scholar
  17. 17.
    K. Karthik, S. Dhanuskodi, A.I.P. Conf Proc, 1731, 050021–050023 (2016)Google Scholar
  18. 18.
    H. Guo, C. Wang, J. Liu, Adv. Mater. Res. 864–86, 625–630 (2014)Google Scholar
  19. 19.
    S. Sivakumar, A. Venkatesan, P. Soundhirarajan, C.P. Khatiwada, Spectrochimic. Acta Part A 136, 1751–1759 (2015)CrossRefGoogle Scholar
  20. 20.
    S. Kumar, A.K. Ojha, AIP Adv. 3, 052109–0521012 (2013)CrossRefGoogle Scholar
  21. 21.
    A.M.M. Tanveer Karim, M. Mozibur Rahman, M. Shahjahan, M.K.R. Khan, Mater. Res. Express 2, 036402–036410 (2015)CrossRefGoogle Scholar
  22. 22.
    N. Thovhogi, E. Park, E. Manikandan, M. Mazza, A. Gurib-Farkim, J. Alloys Compd. 655, 314–320 (2016)CrossRefGoogle Scholar
  23. 23.
    F.T. Thema, P. Beukes, A. Gurib-Farkim, M. Mazza, J. Alloys Compd. 646, 1043–1048 (2015)CrossRefGoogle Scholar
  24. 24.
    B.J. Jin, H.S. Woo, S. Im, S.H. Bae, S.Y. Lee, Appl. Surf. Sci. 521, 169–176 (2001)Google Scholar
  25. 25.
    D.J. Seo, J. Korean. Phys. Soc. 45, 1575–1581 (2004)Google Scholar
  26. 26.
    S.C. Prashantha, B.N. Lakshminarasappa, B.M. Nagabhushanan, J. Alloy Compd. 509, 10185–10196 (2011)CrossRefGoogle Scholar
  27. 27.
    A. Seetharaman, S. Dhanuskodi, Spectrochimic. Acta Part A 127, 543–549 (2014)CrossRefGoogle Scholar
  28. 28.
    G.V. Khade, M.B. Suwarnkar, N.L. Gavade, P.M. Garadkar, J. Mater. Sci. 27, 6425–6432 (2016)Google Scholar
  29. 29.
    A.S. Manikandan, K.B. Reungadevi, K. Ravichandran, P.V. Rajkumar, K. Boubaker, J. Mater. Sci. 27, 11890–11901 (2016)Google Scholar
  30. 30.
    G.P. Awasathi, S.P. Adhikari, K. Sungwon, H.J. Kim, C.H. Park, C.S. Kim, J. Alloys Compd. 682, 208–215 (2016)CrossRefGoogle Scholar
  31. 31.
    T.V. Surendra, S.M. Roopanm J. Photochem. Photobiol. B Biol. 161, 122–128 (2016)CrossRefGoogle Scholar
  32. 32.
    S. Ragupathy, T. Sathya, J. Mater. Sci. 27, 5770–5778 (2016)Google Scholar
  33. 33.
    K. Karthik, S. Dhanuskodi, C. Gobinath, S. Prabukumar, S. Sivaramakrishnan, J. Mater. Sci. 1–11 (2017). doi: 10.1007/s10854-017-6503-8
  34. 34.
    K. Karthik, S. Dhanuskodi, C. Gobinath, S. Sivaramakrishnan, Spectrochimic. Acta Part A 139, 7–12 (2015)CrossRefGoogle Scholar
  35. 35.
    T. Linda, S. Muthupoongodi, X. Sahaya Shajan, S. Balakumar, Optik 127, 8287–8293 (2016)CrossRefGoogle Scholar
  36. 36.
    S. Sathishkumar, M. Parthibavarman, V. Sharmila, M. Karthik, J. Mater. Sci. (2017). doi: 10.1007/s10854-017-6529-y Google Scholar
  37. 37.
    K. Vijayalakshmi, D. Sivaraj, RSC Adv. 5, 64861–64869 (2015)Google Scholar
  38. 38.
    M.R. Bindhu, M. Umadevi, M. Kavin Micheal, M.V. Arasu, N.A. Al-Dhabi, Mater. Lett. 166, 19–22 (2016)CrossRefGoogle Scholar
  39. 39.
    A. Robert Xavier, A.T. Ravichandran, K. Ravichandran, S. Mantha, D. Ravinder, J. Mater. Sci. 27, 11182–11187 (2016)Google Scholar
  40. 40.
    S. Dinesh, S. Barathan, V.K. Premkumar, G. Sivakumar, N. Anandan, J. Mater. Sci. 27(9), 9668–9675 (2016)Google Scholar
  41. 41.
    M. Momeni, M. Mirhosselini, Z. Nazari, A. Kazempour, M. Hakimiyan, J. Mater. Sci. 27(8), 8131–8137 (2016)Google Scholar
  42. 42.
    S.B. Rana, R.P.P. Singh, J. Mater. Sci. 27, 9346–9355 (2016)Google Scholar
  43. 43.
    K.C. Lalithambika, A. Thanyumanavan, K. Ravichandran, S. Sriram, J. Mater. Sci. 27, 1–7 (2016)Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • K. Karthik
    • 1
  • S. Dhanuskodi
    • 1
  • C. Gobinath
    • 3
  • S. Prabukumar
    • 2
  • S. Sivaramakrishnan
    • 2
  1. 1.School of PhysicsBharathidasan UniversityTiruchirappalliIndia
  2. 2.Department of Biotechnology and Genetic EngineeringBharathidasan UniversityTiruchirappalliIndia
  3. 3.Academic Body of Agriculture and Food BiotechnologyUniversidad Autonoma del Estado de Hidalgo TulancingoHidalgoMexico

Personalised recommendations