Structural and optical characteristics of Ti-doped ZnO nanorods deposited by simple chemical bath deposition

  • Shaker A. Bidier
  • M. R. Hashim
  • M. Bououdina


Ti-doped ZnO nanorods (NRs) have been deposited onto Si substrates at 93 °C by using chemical bath deposition method. FESEM observations show high-quality NRs. FTIR spectra display main peak around 560 cm−1 associated with Zn–O bond in addition to minor peak detected around 500 cm−1 referred to Ti–O bond. XRD patterns reveal the presence of the main (002) peak of the hexagonal wurtzite structure for all prepared films, where its intensity increases with increasing Ti doping, thereby indicating a very strong preferred orientation and batter crystallinity. Photoluminescence spectra exhibit a strong enhancement in both UV and visible emissions after Ti doping. Similarly, Raman spectroscopy shows sharp increment in E2(H) mode in doped films. The enhancement mechanism in both structural and optical properties of Ti-doped ZnO films have been investigated.


Nanorod Array Deep Level Emission Chemical Bath Deposition Method Strong Prefer Orientation Deep Level Emission Intensity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors gratefully acknowledge the financial support provided by the Institute of Postgraduate Studies (IPS) Universiti Sains Malaysia (USM) Fellowship and Institute of Nano-optoelectronics Research & Technology Laboratory (INOR), sains@usm, under grant No. 1001/CINOR/811239.


  1. 1.
    Bidier, S.A., et al., Effect of growth time on Ti-doped ZnO nanorods prepared by low-temperature chemical bath deposition. Phys. E 88, 169–173 (2017)CrossRefGoogle Scholar
  2. 2.
    F. Jiménez-García et al., Influence of substrate on structural, morphological and optical properties of ZnO films grown by SILAR method. Bull. Mater. Sci. 37(6), 1283–1291 (2014)CrossRefGoogle Scholar
  3. 3.
    S. Xu, Z.L. Wang, One-dimensional ZnO nanostructures: solution growth and functional properties. Nano Res. 4(11), 1013–1098 (2011)CrossRefGoogle Scholar
  4. 4.
    J. Hassan, Z. Hassan, H. Abu-Hassan, High-quality vertically aligned ZnO nanorods synthesized by microwave-assisted CBD with ZnO–PVA complex seed layer on Si substrates. J. Alloys Compd. 509(23), 6711–6719 (2011)CrossRefGoogle Scholar
  5. 5.
    L. Vayssieres, Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions. Adv. Mater. 15(5), 464–466 (2003)CrossRefGoogle Scholar
  6. 6.
    Niu, X., W. Du, W. Du, Preparation and gas sensing properties of ZnM2O4 (M = Fe, Co, Cr). Sens. Actuators B 99(2), 405–409 (2004)CrossRefGoogle Scholar
  7. 7.
    R.K. Chava, M. Kang, Improving the photovoltaic conversion efficiency of ZnO based dye sensitized solar cells by indium doping. J. Alloys Compd. 692, 67–76 (2017)CrossRefGoogle Scholar
  8. 8.
    C.-L. Hsu et al., Vertical Ti doped ZnO nanorods based on ethanol gas sensor prepared on glass by furnace system with hotwire assistance. Sens. Actuators, B 192, 550–557 (2014)CrossRefGoogle Scholar
  9. 9.
    R. Sridhar et al., Spectroscopic study and optical and electrical properties of Ti-doped ZnO thin films by spray pyrolysis. Spectrochim. Acta Part A 120, 297–303 (2014)CrossRefGoogle Scholar
  10. 10.
    Z. Yong et al., Ti-doped ZnO thin films prepared at different ambient conditions: electronic structures and magnetic properties. Materials 3(6), 3642–3653 (2010)CrossRefGoogle Scholar
  11. 11.
    L.-W. Ji et al., Effect of seed layer on the growth of well-aligned ZnO nanowires. J. Phys. Chem. Solids 70(10), 1359–1362 (2009)CrossRefGoogle Scholar
  12. 12.
    Q. Shao et al., Ferromagnetism in Ti-doped ZnO thin films. J. Appl. Phys. 117(17), 17B908 (2015)CrossRefGoogle Scholar
  13. 13.
    K. Zheng et al., The properties of ethanol gas sensor based on Ti doped ZnO nanotetrapods. Mater. Sci. Eng. B 166(1), 104–107 (2010)CrossRefGoogle Scholar
  14. 14.
    Z.-Y. Ye et al., Structural, electrical, and optical properties of Ti-doped ZnO films fabricated by atomic layer deposition. Nanoscale Res. Lett. 8(1), 1–6 (2013)CrossRefGoogle Scholar
  15. 15.
    Y. Kumar et al., Controlling of ZnO nanostructures by solute concentration and its effect on growth, structural and optical properties. Mater. Res. Express 2(10), 105017 (2015)CrossRefGoogle Scholar
  16. 16.
    S. Kanmani, N. Rajamanickam, K. Ramachandran, Influence of Ti dopant on the properties and dye sensitized solar cell performance of ZnO chunk-shaped nanostructures. Org. Electron. 15(10), 2302–2310 (2014)CrossRefGoogle Scholar
  17. 17.
    C.H. Hsu, W.S. Chen, C.H. Lai, F.S. Yan, Fabrication of Ti-doped ZnO thin films by chemical bath deposition. Adv. Mater. Res. 194–196, 2254–2258 (2011)CrossRefGoogle Scholar
  18. 18.
    L. Lv et al., A template-free alcoholthermal route to Ti (Sn)-doped ZnO nanorods. Mater. Res. Bull. 45(4), 403–408 (2010)CrossRefGoogle Scholar
  19. 19.
    A. Muaz et al., Effect of annealing temperatures on the morphology, optical and electrical properties of TiO2 thin films synthesized by the sol–gel method and deposited on Al/TiO2/SiO2/p-Si. Microsyst. Technol. 22, 871–881 (2015)CrossRefGoogle Scholar
  20. 20.
    R.L. Hoye, K.P. Musselman, J.L. MacManus-Driscoll, Research update: doping ZnO and TiO2 for solar cells. APL Mater. 1(6), 060701 (2013)CrossRefGoogle Scholar
  21. 21.
    National Institutes of Health. Titanium Dioxide. (2017), Accessed 2017 Feb 16
  22. 22.
    J. Luque-Garcıa, M.L. De Castro, Ultrasound: a powerful tool for leaching. TrAC Trends Anal. Chem. 22(1), 41–47 (2003)CrossRefGoogle Scholar
  23. 23.
    G. Jiaa, et al., Solution growth of well-aligned zno nanorods on sapphire substrate. Detail 4, 6 (2013)Google Scholar
  24. 24.
    J. Yang et al., Low-temperature growth and optical properties of ZnO nanorods. J. Alloys Compd. 450(1), 521–524 (2008)CrossRefGoogle Scholar
  25. 25.
    O.F. Farhat et al., Morphological and structural characterization of single-crystal ZnO nanorod arrays on flexible and non-flexible substrates. Beilstein J. Nanotechnol. 6(1), 720–725 (2015)CrossRefGoogle Scholar
  26. 26.
    S.M. Mohammad et al., Fabrication of low cost UV photo detector using ZnO nanorods grown onto nylon substrate. J. Mater. Sci. 26(3), 1322–1331 (2015)Google Scholar
  27. 27.
    G.N. Narayanan, R.S. Ganesh, A. Karthigeyan, Effect of annealing temperature on structural, optical and electrical properties of hydrothermal assisted zinc oxide nanorods. Thin Solid Films 598, 39–45 (2016)CrossRefGoogle Scholar
  28. 28.
    Djaja, N.F., D.A. Montja, R. Saleh, The effect of Co incorporation into ZnO nanoparticles. Adv. Mater. Phys. Chem. 3, 33–34 (2013)CrossRefGoogle Scholar
  29. 29.
    Shah, H., B.A.M. Manikandan, V. Ganesan, Enhanced bioactivity of Ag/ZnO nanorods-a comparative antibacterial study (Sbds). J. Nanomed. Nanotechnol. (2013). doi: 10.4172/2157-7439.1000168 Google Scholar
  30. 30.
    K.H. Kim et al., Morphological properties of Al-doped ZnO nano/microstructures. Superlattices Microstruct. (2016). doi: 10.1016/j.spmi.2016.01.019 Google Scholar
  31. 31.
    D. Tsiourvas et al., Covalent attachment of a bioactive hyperbranched polymeric layer to titanium surface for the biomimetic growth of calcium phosphates. J. Mater. Sci. 22(1), 85–96 (2011)Google Scholar
  32. 32.
    E.R. Waclawik et al., Functionalised zinc oxide nanowire gas sensors: enhanced NO2 gas sensor response by chemical modification of nanowire surfaces. Beilstein J. Nanotechnol. 3(1), 368–377 (2012)CrossRefGoogle Scholar
  33. 33.
    Parvin, T., et al., Photocatalytic degradation of municipal wastewater and brilliant blue dye using hydrothermally synthesized surface-modified silver-doped ZnO designer particles. Int. J. Photoenergy (2012). doi: 10.1155/2012/670610 Google Scholar
  34. 34.
    N. Xu et al., Photoluminescence and low-threshold lasing of ZnO nanorod arrays. Opt. Express 20(14), 14857–14863 (2012)CrossRefGoogle Scholar
  35. 35.
    S. Benramache et al., Correlation between crystallite size-optical gap energy and precursor molarities of ZnO thin films. J. Semicond. 35(4), 042001 (2014)CrossRefGoogle Scholar
  36. 36.
    T. Akilan, N. Srinivasan, R. Saravanan, Magnetic and optical properties of Ti doped ZnO prepared by solid state reaction method. Mater. Sci. Semicond. Process. 30, 381–387 (2015)CrossRefGoogle Scholar
  37. 37.
    S. Deshpande et al., Size dependency variation in lattice parameter and valency states in nanocrystalline cerium oxide. Appl. Phys. Lett. 87(13), 133113 (2005)CrossRefGoogle Scholar
  38. 38.
    D.P. Rueda, J. Vadillo, J. Laserna, Effects of Post-growth Thermal Annealing on Room Temperature Pulsed Laser Deposited ZnO Thin Films. Journal of Physics: Conference Series (IOP Publishing, Bristol, 2016)Google Scholar
  39. 39.
    X. Li et al., Study of oxygen vacancies′ influence on the lattice parameter in ZnO thin film. Mater. Lett. 85, 25–28 (2012)CrossRefGoogle Scholar
  40. 40.
    M. Babikier et al., Cu-doped ZnO nanorod arrays: the effects of copper precursor and concentration. Nanoscale Res. Lett. 9(1), 199 (2014)CrossRefGoogle Scholar
  41. 41.
    A. Umar et al., Structural and optical properties of single-crystalline ZnO nanorods grown on silicon by thermal evaporation. Nanotechnology 17(16), 4072 (2006)CrossRefGoogle Scholar
  42. 42.
    E.S. Shim et al., Annealing effect on the structural and optical properties of ZnO thin film on InP. Mater. Sci. Eng. B 102(1), 366–369 (2003)CrossRefGoogle Scholar
  43. 43.
    B. Panigrahy et al., Defect-related emissions and magnetization properties of ZnO nanorods. Adv. Funct. Mater. 20(7), 1161–1165 (2010)CrossRefGoogle Scholar
  44. 44.
    M. Gomi et al., Photoluminescent and structural properties of precipitated ZnO fine particles. Jpn. J. Appl. Phys. 42(2R), 481 (2003)CrossRefGoogle Scholar
  45. 45.
    Hassan, N., M. Hashim, Y. Al-Douri, Morphology and optical investigations of ZnO pyramids and nanoflakes for optoelectronic applications. Optik-Int. J. Light Electron Optics, 125(11), 2560–2564 (2014)CrossRefGoogle Scholar
  46. 46.
    B.E. Sernelius et al., Band-gap tailoring of ZnO by means of heavy Al doping. Phys. Rev. B 37(17), 10244 (1988)CrossRefGoogle Scholar
  47. 47.
    X. Liu et al., Synthesis and field emission properties of highly ordered Ti-doped ZnO nanoarray structure. J. Mater. Sci. 24(8), 2839–2845 (2013)Google Scholar
  48. 48.
    A.M. Selman, Z. Hassan, M. Husham, Structural and photoluminescence studies of rutile TiO 2 nanorods prepared by chemical bath deposition method on Si substrates at different pH values. Measurement 56, 155–162 (2014)CrossRefGoogle Scholar
  49. 49.
    W.J. Salcedo, F.J. Ramirez Fernandez, J.C. Rubimc, Influence of laser excitation on raman and photoluminescence spectra and FTIR study of porous silicon layers. Braz. J. Phys. 29(4), 751–755 (1999)CrossRefGoogle Scholar
  50. 50.
    Q. Yang et al., Extended photoresponse and multi-band luminescence of ZnO/ZnSe core/shell nanorods. Nanoscale Res. Lett. 9(1), 31 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Shaker A. Bidier
    • 1
  • M. R. Hashim
    • 1
  • M. Bououdina
    • 2
  1. 1.Institute of Nano-optoelectronics Research & Technology Laboratory (INOR), School of PhysicsUniversiti Sains Malaysia, USMPenangMalaysia
  2. 2.Department of Physics, College of ScienceUniversity of BahrainManamaBahrain

Personalised recommendations