Mesoporous three dimension NiCo2O4/graphene composites fabricated by self-generated sacrificial template method for a greatly enhanced specific capacity

  • Mengqi Yao
  • Ni Wang
  • Jialin Yin
  • Wencheng Hu


We reported a facile self-generated sacrificial template method for fabricating mesoporous three dimension NiCo2O4/graphene electrode material. Nickel, cobalt, and zinc ions dissolved in ethylene glycol reacted with potassium hydroxide solution to co-deposit onto graphene at 140 °C under atmospheric environment. With further addition of potassium hydroxide, zinc hydroxide as a self-generated sacrificial template was dissolved in situ, leading to the formation of mesoporous morphology. Structure and morphology characteristics were determined by X-ray diffraction, scanning electron microscopy, high-resolution transmission electron microscopy, and N2 adsorption experiments. Electrochemical properties were analyzed by AC impedance spectroscopy, cycling voltammetry, and charge/discharge test in 2 M KOH. Results showed that the as—prepared NiCo2O4/graphene electrode possessed a large specific surface area of 281.4 m2 g−1, an ultrahigh specific capacity of 1024.99 and 662.12 C g−1 at current density of 1 and 50 A g−1 respectively, and a long-term cycling life of 10,000 charge/discharge tests.


Specific Capacity High Specific Capacity NiCo2O4 Zinc Hydroxide Cyclic Voltammogram Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We gratefully acknowledge the funding support by Laboratory of Precision Manufacturing Technology, CAEP (Grant No. KF15003).

Supplementary material

10854_2017_6898_MOESM1_ESM.docx (22 kb)
Supplementary material 1 (DOCX 22 KB)


  1. 1.
    R. Vellacheri, A. Al–Haddad, H. Zhao, W. Wang, C. Wang, Y. Lei, Nano Energy 8, 231 (2014)CrossRefGoogle Scholar
  2. 2.
    J.R. Mille, P. Simon, Science 321, 651 (2008)CrossRefGoogle Scholar
  3. 3.
    P.J. Hall, M. Mirzaeian, S.I. Fletcher, F.B. Sillars, A.J.R. Rennie, O. Shitta–Bey, G. Wilson, A. Cruden, R. Carter, Energy Environ. Sci. 9, 1238 (2012)Google Scholar
  4. 4.
    P. Chen, G. Shen, Y. Shi, H. Chen, C. Zhou, ACS Nano 4, 4403 (2012)CrossRefGoogle Scholar
  5. 5.
    K. Liang, L. Lei, Y. Yang, ACS Energy Lett. 2, 373 (2017)CrossRefGoogle Scholar
  6. 6.
    H. Xia, Y. Meng, G. Yua, C. Cui, L. Lu, J. Solid State Electrochem. 15, A60 (2012)CrossRefGoogle Scholar
  7. 7.
    N. Wang, P. Zhao, K. Liang, M. Yao, Y. Yang, W. Hu, Chem. Eng. J. 207, 105 (2017)CrossRefGoogle Scholar
  8. 8.
    T. Brousse, D. Belanger, J. Long, J. Electrochem. Soc. 162, A5185 (2015)CrossRefGoogle Scholar
  9. 9.
    P. Simon, Y. Gogotsi, B. Dunn, Science 343, 1210 (2014)CrossRefGoogle Scholar
  10. 10.
    B. Saravanakumar, K.K. Purushothaman, G. Muralidharan, ACS Appl. Mater. Interfaces 4, 4484 (2012)CrossRefGoogle Scholar
  11. 11.
    M. Zhou, Y. Deng, X. Liu, W. Hu, J. Mater. Sci.: Mater. Electron. 26, 6306 (2015)Google Scholar
  12. 12.
    K. Liang, X. Tang, W. Hu, J. Mater. Chem. 22, 11062 (2012)CrossRefGoogle Scholar
  13. 13.
    M. Zhou, Y. Deng, K. Liang, X. Liu, B. Wei, W. Hu, J. Electroanal. Chem. 742, 1 (2015)CrossRefGoogle Scholar
  14. 14.
    X. Xia, J. Tu, Y. Zhang, X. Wang, C. Gu, X. Zhao, H. Fan, ACS Nano 6, 5531 (2012)CrossRefGoogle Scholar
  15. 15.
    Y. Yuan, X. Xia, J. Wu, X. Huang, Y. Pei, J. Yang, S. Guo, Electrochem. Commun. 13, 1123 (2011)CrossRefGoogle Scholar
  16. 16.
    L. Li, P. Gao, S. Gai, F. He, Y. Chen, M. Zhang, P. Yang, Electrochim. Acta 190, 566 (2016)CrossRefGoogle Scholar
  17. 17.
    L. Chang, F. Ren, C. Zhao, X. Xue, J. Electroanal. Chem. 778, 110 (2016)CrossRefGoogle Scholar
  18. 18.
    H. Wang, H. Casalongue, Y. Liang, H. Dai, J. Am. Chem. Soc. 132, 7472 (2012)CrossRefGoogle Scholar
  19. 19.
    L. Cao, F. Xu, Y. Liang, H. Li, Adv. Mater. 16, 1853 (2014)CrossRefGoogle Scholar
  20. 20.
    T. Xue, X. Wang, J. Lee, J. Power Sources 201, 382 (2012)CrossRefGoogle Scholar
  21. 21.
    K. Adib, M. Rahimi-Nasrabadi, Z. Rezvani, S.M. Pourmortazavi, F. Ahmadi, H.R. Naderi, M.R. Ganjali, J. Mater. Sci.: Mater. Electron. 27, 4541 (2016)Google Scholar
  22. 22.
    J. Yin, H. Zhang, J. Luo, M. Yao, W. Hu, J. Mater. Sci.: Mater. Electron. 28, 2093 (2017)Google Scholar
  23. 23.
    L. Hu, L. Wu, M. Liao, X. Hu, X. Fang, Adv. Funct. Mater. 22, 998 (2012)CrossRefGoogle Scholar
  24. 24.
    X. Wang, X. Han, M. Lim, N. Singh, C. Gan, M. Jan, P.S. Lee. J. Phys. Chem. C. 116, 12448 (2012)CrossRefGoogle Scholar
  25. 25.
    D.U. Lee, B.J. Kim, Z. Chen, J. Mater. Chem. A. 1, 4754 (2013)CrossRefGoogle Scholar
  26. 26.
    N. Wang, P. Zhao, Q. Zhang, M. Yao, W. Hu, Compos. Part B-Eng. 113, 144 (2017)CrossRefGoogle Scholar
  27. 27.
    E. Jokar, A.I. Zad, S. Shahrokhian J. Solid State Electrochem. 19, 269 (2015)CrossRefGoogle Scholar
  28. 28.
    R.B. Waghmode, A.P. Torane, J. Mater. Sci.: Mater. Electron. 27, 6133 (2016)Google Scholar
  29. 29.
    X. Wang, C. Yan, A. Sumboja, P. Lee, Nano Energy 3, 119–126 (2014)CrossRefGoogle Scholar
  30. 30.
    Y. Bai, B. Wang, X. Lun, J. Sun, L. Gao, J. Colloid Interf. Sci. 468, 1 (2016)CrossRefGoogle Scholar
  31. 31.
    Q. Zhang, N. Wang, P. Zhao, M. Yao, W. Hu, Compos. Part A. 98, 58, (2017)CrossRefGoogle Scholar
  32. 32.
    H. Zhou, H. Zhai, G. Han, J. Mater. Sci.: Mater. Electron. 27, 2773 (2016)Google Scholar
  33. 33.
    C. Lee, X. Wei, J.W. Kysar, J. Hone, Science 321, 385 (2008)CrossRefGoogle Scholar
  34. 34.
    H. Jiang, P.S. Lee, C. Li, Energy Environ. Sci. 6, 41 (2013)CrossRefGoogle Scholar
  35. 35.
    S. Ye, L.G. Kim, S.Y. Yang, J.W. Lee, W.C. Oh, J. Mater. Sci.: Mater. Electron. (2017). doi: 10.1007/s10854-017-6349-0 Google Scholar
  36. 36.
    B. Wei, L. Wang, Q. Miao, Y. Yuan, P. Dong, R. Vajtai, W.D. Feia, Carbon 85, 249 (2015)CrossRefGoogle Scholar
  37. 37.
    V.H. Nguyen, C. Lamiel, J. Shim, Mater. Lett. 170, 105 (2016)CrossRefGoogle Scholar
  38. 38.
    S. Beraa, H. Khana, I. Biswas, S. Jana Appl. Surf. Sci. 383, 165 (2016)CrossRefGoogle Scholar
  39. 39.
    J. Rouquerol, D. Avnir, C.W. Fairbridge, D.H. Everett, J.M. Haynes, N. Pernicone, J.D.F. Ramsay, K.S. Sing, W.K.K. Unger, Pure. Appl. Chem. 66, 1739 (1994)CrossRefGoogle Scholar
  40. 40.
    V. Gupta, S. Gupta, N. Miura, J. Power Sources 175, 680 (2008)CrossRefGoogle Scholar
  41. 41.
    C. Hu, C. Cheng, Electrochem. Solid–State Lett. 5, A43 (2002)CrossRefGoogle Scholar
  42. 42.
    M. Yao, N. Wang, W. Hu, J. Electroanal. Chem. 782, 133 (2016)CrossRefGoogle Scholar
  43. 43.
    Y. Shang, Y. Gai, L. Wang, L. Hao, H. Lv, F. Dong, L. Gong, Eur. J. Inorg. Chem. doi: 10.1002/ejic.201700020 (2017)Google Scholar
  44. 44.
    N. Wang, M. Yao, P. Zhao, W. Hu, S. Komarneni, J. Mater. Chem. A. 5, 5838 (2017)CrossRefGoogle Scholar
  45. 45.
    D. Zhao, J. Qin, L. Zheng, M. Cao, Chem. Mater. 28, 4180 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Center for Applied ChemistryUniversity of Electronic Science & Technology of ChinaChengduPeople’s Republic of China

Personalised recommendations