Skip to main content
Log in

Mesoporous three dimension NiCo2O4/graphene composites fabricated by self-generated sacrificial template method for a greatly enhanced specific capacity

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We reported a facile self-generated sacrificial template method for fabricating mesoporous three dimension NiCo2O4/graphene electrode material. Nickel, cobalt, and zinc ions dissolved in ethylene glycol reacted with potassium hydroxide solution to co-deposit onto graphene at 140 °C under atmospheric environment. With further addition of potassium hydroxide, zinc hydroxide as a self-generated sacrificial template was dissolved in situ, leading to the formation of mesoporous morphology. Structure and morphology characteristics were determined by X-ray diffraction, scanning electron microscopy, high-resolution transmission electron microscopy, and N2 adsorption experiments. Electrochemical properties were analyzed by AC impedance spectroscopy, cycling voltammetry, and charge/discharge test in 2 M KOH. Results showed that the as—prepared NiCo2O4/graphene electrode possessed a large specific surface area of 281.4 m2 g−1, an ultrahigh specific capacity of 1024.99 and 662.12 C g−1 at current density of 1 and 50 A g−1 respectively, and a long-term cycling life of 10,000 charge/discharge tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. R. Vellacheri, A. Al–Haddad, H. Zhao, W. Wang, C. Wang, Y. Lei, Nano Energy 8, 231 (2014)

    Article  Google Scholar 

  2. J.R. Mille, P. Simon, Science 321, 651 (2008)

    Article  Google Scholar 

  3. P.J. Hall, M. Mirzaeian, S.I. Fletcher, F.B. Sillars, A.J.R. Rennie, O. Shitta–Bey, G. Wilson, A. Cruden, R. Carter, Energy Environ. Sci. 9, 1238 (2012)

    Google Scholar 

  4. P. Chen, G. Shen, Y. Shi, H. Chen, C. Zhou, ACS Nano 4, 4403 (2012)

    Article  Google Scholar 

  5. K. Liang, L. Lei, Y. Yang, ACS Energy Lett. 2, 373 (2017)

    Article  Google Scholar 

  6. H. Xia, Y. Meng, G. Yua, C. Cui, L. Lu, J. Solid State Electrochem. 15, A60 (2012)

    Article  Google Scholar 

  7. N. Wang, P. Zhao, K. Liang, M. Yao, Y. Yang, W. Hu, Chem. Eng. J. 207, 105 (2017)

    Article  Google Scholar 

  8. T. Brousse, D. Belanger, J. Long, J. Electrochem. Soc. 162, A5185 (2015)

    Article  Google Scholar 

  9. P. Simon, Y. Gogotsi, B. Dunn, Science 343, 1210 (2014)

    Article  Google Scholar 

  10. B. Saravanakumar, K.K. Purushothaman, G. Muralidharan, ACS Appl. Mater. Interfaces 4, 4484 (2012)

    Article  Google Scholar 

  11. M. Zhou, Y. Deng, X. Liu, W. Hu, J. Mater. Sci.: Mater. Electron. 26, 6306 (2015)

    Google Scholar 

  12. K. Liang, X. Tang, W. Hu, J. Mater. Chem. 22, 11062 (2012)

    Article  Google Scholar 

  13. M. Zhou, Y. Deng, K. Liang, X. Liu, B. Wei, W. Hu, J. Electroanal. Chem. 742, 1 (2015)

    Article  Google Scholar 

  14. X. Xia, J. Tu, Y. Zhang, X. Wang, C. Gu, X. Zhao, H. Fan, ACS Nano 6, 5531 (2012)

    Article  Google Scholar 

  15. Y. Yuan, X. Xia, J. Wu, X. Huang, Y. Pei, J. Yang, S. Guo, Electrochem. Commun. 13, 1123 (2011)

    Article  Google Scholar 

  16. L. Li, P. Gao, S. Gai, F. He, Y. Chen, M. Zhang, P. Yang, Electrochim. Acta 190, 566 (2016)

    Article  Google Scholar 

  17. L. Chang, F. Ren, C. Zhao, X. Xue, J. Electroanal. Chem. 778, 110 (2016)

    Article  Google Scholar 

  18. H. Wang, H. Casalongue, Y. Liang, H. Dai, J. Am. Chem. Soc. 132, 7472 (2012)

    Article  Google Scholar 

  19. L. Cao, F. Xu, Y. Liang, H. Li, Adv. Mater. 16, 1853 (2014)

    Article  Google Scholar 

  20. T. Xue, X. Wang, J. Lee, J. Power Sources 201, 382 (2012)

    Article  Google Scholar 

  21. K. Adib, M. Rahimi-Nasrabadi, Z. Rezvani, S.M. Pourmortazavi, F. Ahmadi, H.R. Naderi, M.R. Ganjali, J. Mater. Sci.: Mater. Electron. 27, 4541 (2016)

    Google Scholar 

  22. J. Yin, H. Zhang, J. Luo, M. Yao, W. Hu, J. Mater. Sci.: Mater. Electron. 28, 2093 (2017)

    Google Scholar 

  23. L. Hu, L. Wu, M. Liao, X. Hu, X. Fang, Adv. Funct. Mater. 22, 998 (2012)

    Article  Google Scholar 

  24. X. Wang, X. Han, M. Lim, N. Singh, C. Gan, M. Jan, P.S. Lee. J. Phys. Chem. C. 116, 12448 (2012)

    Article  Google Scholar 

  25. D.U. Lee, B.J. Kim, Z. Chen, J. Mater. Chem. A. 1, 4754 (2013)

    Article  Google Scholar 

  26. N. Wang, P. Zhao, Q. Zhang, M. Yao, W. Hu, Compos. Part B-Eng. 113, 144 (2017)

    Article  Google Scholar 

  27. E. Jokar, A.I. Zad, S. Shahrokhian J. Solid State Electrochem. 19, 269 (2015)

    Article  Google Scholar 

  28. R.B. Waghmode, A.P. Torane, J. Mater. Sci.: Mater. Electron. 27, 6133 (2016)

    Google Scholar 

  29. X. Wang, C. Yan, A. Sumboja, P. Lee, Nano Energy 3, 119–126 (2014)

    Article  Google Scholar 

  30. Y. Bai, B. Wang, X. Lun, J. Sun, L. Gao, J. Colloid Interf. Sci. 468, 1 (2016)

    Article  Google Scholar 

  31. Q. Zhang, N. Wang, P. Zhao, M. Yao, W. Hu, Compos. Part A. 98, 58, (2017)

    Article  Google Scholar 

  32. H. Zhou, H. Zhai, G. Han, J. Mater. Sci.: Mater. Electron. 27, 2773 (2016)

    Google Scholar 

  33. C. Lee, X. Wei, J.W. Kysar, J. Hone, Science 321, 385 (2008)

    Article  Google Scholar 

  34. H. Jiang, P.S. Lee, C. Li, Energy Environ. Sci. 6, 41 (2013)

    Article  Google Scholar 

  35. S. Ye, L.G. Kim, S.Y. Yang, J.W. Lee, W.C. Oh, J. Mater. Sci.: Mater. Electron. (2017). doi:10.1007/s10854-017-6349-0

    Google Scholar 

  36. B. Wei, L. Wang, Q. Miao, Y. Yuan, P. Dong, R. Vajtai, W.D. Feia, Carbon 85, 249 (2015)

    Article  Google Scholar 

  37. V.H. Nguyen, C. Lamiel, J. Shim, Mater. Lett. 170, 105 (2016)

    Article  Google Scholar 

  38. S. Beraa, H. Khana, I. Biswas, S. Jana Appl. Surf. Sci. 383, 165 (2016)

    Article  Google Scholar 

  39. J. Rouquerol, D. Avnir, C.W. Fairbridge, D.H. Everett, J.M. Haynes, N. Pernicone, J.D.F. Ramsay, K.S. Sing, W.K.K. Unger, Pure. Appl. Chem. 66, 1739 (1994)

    Article  Google Scholar 

  40. V. Gupta, S. Gupta, N. Miura, J. Power Sources 175, 680 (2008)

    Article  Google Scholar 

  41. C. Hu, C. Cheng, Electrochem. Solid–State Lett. 5, A43 (2002)

    Article  Google Scholar 

  42. M. Yao, N. Wang, W. Hu, J. Electroanal. Chem. 782, 133 (2016)

    Article  Google Scholar 

  43. Y. Shang, Y. Gai, L. Wang, L. Hao, H. Lv, F. Dong, L. Gong, Eur. J. Inorg. Chem. doi:10.1002/ejic.201700020 (2017)

    Google Scholar 

  44. N. Wang, M. Yao, P. Zhao, W. Hu, S. Komarneni, J. Mater. Chem. A. 5, 5838 (2017)

    Article  Google Scholar 

  45. D. Zhao, J. Qin, L. Zheng, M. Cao, Chem. Mater. 28, 4180 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the funding support by Laboratory of Precision Manufacturing Technology, CAEP (Grant No. KF15003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wencheng Hu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 22 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, M., Wang, N., Yin, J. et al. Mesoporous three dimension NiCo2O4/graphene composites fabricated by self-generated sacrificial template method for a greatly enhanced specific capacity. J Mater Sci: Mater Electron 28, 11119–11124 (2017). https://doi.org/10.1007/s10854-017-6898-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-6898-2

Keywords

Navigation