Synthesis and lithium storage properties of vanadium oxide nanotubes (VOxNTs)-Polyaniline nanocomposite as cathode material for lithium ion batteries

  • Xiaowei Zhou
  • Taoling He
  • Xu Chen
  • Zhen Zhao
  • Xiaojiao Guo
  • Li Sun
  • Zhu Liu


A novel VOxNTs-Polyaniline nanocomposite was prepared by hydrothermal treatment and a wet-chemistry method. When this VOxNTs-Polyaniline was used as cathode material for lithium ion batteries (LIBs), it displayed much higher specific capacity and better cycling stability compared with the pristine VOxNTs. The improvement of electrochemical performance could be attributed to the effective removal of a large part of organic template without any electrochemical activity by cationic exchange process and the incorporation of polyaniline with good conductivity as well as lithium storage property in itself via chemical oxidative polymerization. Moreover, the polyaniline could also behave as a useful structural buffer, alleviating the strain during repeated Li+ intercalation/deintercalation and contributing to cyclic stability. It is hopeful to further improve its performance through the complete elimination of useless soft-template and increasing the crystallinity of active VOx, making this novel VOxNTs-Polyaniline a promising cathode candidate with high performance for LIBs.


Polyaniline Cathode Material LiFePO4 Vanadium Oxide Organic Template 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



It is appreciated for the financial support from the Youth Project of Applied basic research of Yunnan Science and Technology Department (Grant No. 2015FD001) and the Young/Middle-aged Backbone Teacher Cultivating Scheme of Yunnan University. This work is also funded in part by the National Natural Science Foundation of China (Grant Nos. 61366002, 61664009) and the High-end Scientific and Technological Talents Introduction Project of Yunnan Province (Grant No. 2013HA019).

Supplementary material

10854_2017_6895_MOESM1_ESM.doc (151 kb)
Supplementary material 1 (DOC 151 KB)


  1. 1.
    Y.G. Wang, H.Q. Li, P. He, E. Hosono, H.S. Zhou, Nanoscale 2, 1294 (2010)CrossRefGoogle Scholar
  2. 2.
    Y. Li, J.C. Wu, N. Chopra, J. Mater. Sci. 50, 7843 (2015)CrossRefGoogle Scholar
  3. 3.
    H.X. Zhang, S.L. Jing, Y.J. Hu, H. Jiang, C.Z. Li, J. Power Sour. 307, 214 (2016)CrossRefGoogle Scholar
  4. 4.
    S.K. Park, C.Y. Seong, S. Yoo, Y.Z. Piao, Energy 99, 266 (2016)CrossRefGoogle Scholar
  5. 5.
    Y. Liu, W. Wang, L. Gu, Y.W. Wang, Y.L. Ying, Y.Y. Mao, L.W. Sun, X.S. Peng, ACS Appl. Mater. Interfaces 5, 9850 (2013)CrossRefGoogle Scholar
  6. 6.
    S.L. Chen, F.F. Cao, F. Liu, Q.J. Xiang, X.H. Feng, L.H. Liu, G.H. Qiu, RSC Adv. 4, 13693 (2014)CrossRefGoogle Scholar
  7. 7.
    Z.X. Yang, Z.L. Song, G. Chu, X.X. Kang, T.Q. Ren, W.S. Yang, Q.D. Qiao, J. Mater. Sci. 47, 4205 (2012)CrossRefGoogle Scholar
  8. 8.
    C.J. Patridge, C.T. Love, K.E. Swider-Lyons, M.E. Twigg, D.E. Ramaker, J. Solid State Chem. 203, 134 (2013)CrossRefGoogle Scholar
  9. 9.
    D. Luo, G.S. Li, C.C. Fu, J. Zheng, J.M. Fan, Q. Li, L.P. Li, J. Power Sour. 276, 238 (2015)CrossRefGoogle Scholar
  10. 10.
    A. Sakunthala, M.V. Reddy, S. Selvasekarapandian, B.V.R. Chowdari, P.C. Selvin, Energy Environ. Sci. 4, 1712 (2011)CrossRefGoogle Scholar
  11. 11.
    J. Liu, H. Xia, D. Xue, L. Lu, J. Am. Chem. Soc. 131, 12086 (2009)CrossRefGoogle Scholar
  12. 12.
    Y.X. Tang, X.H. Rui, Y.Y. Zhang, T.M. Lim, Z.L. Dong, H.H. Hng, X.D. Chen, Q.Y. Yan, Z. Chen, J. Mater. Chem. A 1, 82 (2013)CrossRefGoogle Scholar
  13. 13.
    D.M. Yu, C.G. Chen, S.H. Xie, Y.Y. Liu, K. Park, X.Y. Zhou, Q.F. Zhang, J.Y. Li, G.Z. Cao, Energy Environ. Sci. 4, 858 (2011)CrossRefGoogle Scholar
  14. 14.
    X.H. Liu, J.Q. Wang, J.Y. Zhang, S.R. Yang, J. Mater. Sci. 42, 867 (2007)CrossRefGoogle Scholar
  15. 15.
    J. Pan, M. Li, Y.Y. Luo, H. Wu, L. Zhong, Q. Wang, G.H. Li, Mater. Res. Bull. 74, 90 (2016)CrossRefGoogle Scholar
  16. 16.
    L.Q. Mai, L. Xu, C.H. Han, X. Xu, Y.Z. Luo, S.Y. Zhao, Y.L. Zhao, Nano Lett. 10, 4750 (2010)CrossRefGoogle Scholar
  17. 17.
    J. Shin, T. Kim, J. Je, T.S. You, J. Kim, Electrochim. Acta 139, 408 (2014)CrossRefGoogle Scholar
  18. 18.
    S. Mateti, M.M. Rahman, L.H. Li, Q.R. Cai, Y. Chen, RSC Adv. 6, 35287 (2016)CrossRefGoogle Scholar
  19. 19.
    J.L. Cheng, G.F. Gu, Q. Guan, J.M. Razal, Z.Y. Wang, X.L. Li, B. Wang, J. Mater. Chem. A 4, 2729 (2016)CrossRefGoogle Scholar
  20. 20.
    Y.H. Hu, X.L. Sun, J. Mater. Chem. A 2, 10712 (2014)CrossRefGoogle Scholar
  21. 21.
    G.M. Zhou, F. Li, H.M. Cheng, Energy Environ. Sci. 7, 1307 (2014)CrossRefGoogle Scholar
  22. 22.
    X.H. Rui, J.X. Zhu, W.L. Liu, H.T. Tan, D. Sim, C. Xu, H. Zhang, J. Ma, H.H. Hng, T.M. Lim, Q.Y. Yan, RSC Adv. 1, 117 (2011)CrossRefGoogle Scholar
  23. 23.
    K.B. Ghoreishi, M. Ghasemi, M. Rahimnejad, M.A. Yarmo, W.R.W. Daud, N. Asim, M. Ismail, Int. J. Energy Res. 38, 70 (2014)CrossRefGoogle Scholar
  24. 24.
    S. Goswami, T. Brehm, S. Filonovich, M.T. Cidade, Smart. Mater. Struct. 23, 105012 (2014)CrossRefGoogle Scholar
  25. 25.
    M.H. Bai, L.J. Bian, Y. Song, X.X. Liu, ACS Appl. Mater. Interfaces 6, 12656 (2014)CrossRefGoogle Scholar
  26. 26.
    S.Z. Huang, Y. Cai, J. Jin, Y. Li, X.F. Zheng, H.E. Wang, M. Wu, L.H. Chen, B.L. Su, J. Mater. Chem. A 2, 14099 (2014)CrossRefGoogle Scholar
  27. 27.
    K.S. Kim, S.J. Park, J. Solid State Chem. 184, 2724 (2011)CrossRefGoogle Scholar
  28. 28.
    F. Ye, B.T. Zhao, R. Ran, Z.P. Shao, J. Power Sour. 290, 61 (2015)CrossRefGoogle Scholar
  29. 29.
    A. Dobley, K. Ngala, S.F. Yang, P.Y. Zavalij, M.S. Whittingham, Chem. Mater. 13, 4382 (2001)CrossRefGoogle Scholar
  30. 30.
    W. Chen, L.Q. Mai, J.F. Peng, Q. Xu, Q.Y. Zhu, J. Mater. Sci. 39, 2625 (2004)CrossRefGoogle Scholar
  31. 31.
    B. Alonso, J. Livage, J. Solid State Chem. 148, 16 (1999)CrossRefGoogle Scholar
  32. 32.
    H.J. Muhr, F. Krumeich, U.P. Schonholzer, F. Bieri, M. Niederberger, L.J. Gauckler, R. Nesper, Adv. Mater. 12, 231 (2000)CrossRefGoogle Scholar
  33. 33.
    S.A. Corr, M. Grossman, J.D. Furman, B.C. Melot, A.K. Cheetham, K.R. Heier, R. Seshadri, Chem. Mater. 20, 6396 (2008)CrossRefGoogle Scholar
  34. 34.
    J.M. Reinoso, H.J. Muhr, F. Krumeich, F. Bieri, R. Nesper, Helv. Chim. Acta 83, 1724 (2000)CrossRefGoogle Scholar
  35. 35.
    M.E. Spahr, P.S. Bitterli, R. Nesper, O. Haas, P. Novák, J. Electrochem. Soc. 146, 2780 (1999)CrossRefGoogle Scholar
  36. 36.
    J. Li, L.F. Zheng, K.F. Zhang, X.Q. Feng, Z.X. Su, J.T. Ma, Mater. Res. Bull. 43, 2810 (2008)CrossRefGoogle Scholar
  37. 37.
    L.J. Mao, C.Y. Liu, Mater. Res. Bull. 43, 1384 (2008)CrossRefGoogle Scholar
  38. 38.
    M. Malta, G. Louarn, N. Errien, R.M. Torresi, J. Power Sour. 156, 533 (2006)CrossRefGoogle Scholar
  39. 39.
    A. Surca, B. Orel, Electrochim. Acta 44, 3051 (1999)CrossRefGoogle Scholar
  40. 40.
    A. Tiwaria, R. Kumar, M. Prabaharan, R.R. Pandey, P. Kumari, A. Chaturvedi, A.K. Mishra, Polym. Adv. Technol. 21, 615 (2010)CrossRefGoogle Scholar
  41. 41.
    N. Joseph, J. Varghese, M.T. Sebastian, RSC Adv. 5, 20459 (2015)CrossRefGoogle Scholar
  42. 42.
    N. Joseph, J. Varghese, M.T. Sebastian, J. Mater. Chem. C 4, 999 (2016)CrossRefGoogle Scholar
  43. 43.
    X.B. Yan, J.T. Chen, J. Yang, Q.J. Xue, P. Miele, ACS Appl. Mater. Interfaces 2, 2521 (2010)CrossRefGoogle Scholar
  44. 44.
    C.H. Chen, J. Polym. Res. 9, 195 (2002)CrossRefGoogle Scholar
  45. 45.
    J.Q. Zhao, Y. Wang, J. Mater. Chem. A 2, 14947 (2014)CrossRefGoogle Scholar
  46. 46.
    A.Y. Shenouda, H.K. Liu, J. Power Sour. 185, 1386 (2008)CrossRefGoogle Scholar
  47. 47.
    Y.P. Liu, K. Huang, H. Luo, H.X. Li, X. Qi, J.X. Zhong, RSC Adv. 4, 17653 (2014)CrossRefGoogle Scholar
  48. 48.
    D. Li, P. He, H.Q. Li, H.S. Zhou, Phys. Chem. Chem. Phys. 14, 9086 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of PhysicsSchool of Physics and Astronomy, Yunnan UniversityKunmingPeople’s Republic of China
  2. 2.Department of Mechanical EngineeringUniversity of HoustonHoustonUSA
  3. 3.Yunnan Key Laboratory of Micro/Nano-Materials and TechnologyYunnan UniversityKunmingPeople’s Republic of China

Personalised recommendations