Synthesis and characterization of Fe2O3/Mn2O3/FeMn2O4 nano composite alloy coated glass for photo-catalytic degradation of Reactive Blue 222

  • Mohammad Hossein Habibi
  • Vala Mosavi


Fe2O3/Mn2O3/FeMn2O4 nano-composite coated glass was synthesised by a one step method and applied for the photo-catalytic degradation of Reactive Blue 222 as a diazo textile dye from aquatic environment. The product was characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), and UV–Vis diffuse reflectance spectroscopy (UV–Vis DRS). XRD pattern confirmed the spinel structure of FeMn2O4 and bixbyite structure for (Mn,Fe)2O3. FESEM results showed an average size of the Fe2O3/Mn2O3/FeMn2O4 nano-composite at about 15 nm. UV–Vis DRS spectrum showed absorptions between 392–495 nm with strong absorption at visible region of solar light. The band gap energy of nano-composite was about 3.1 eV. The photcatalytic activity of Fe2O3/Mn2O3/FeMn2O4 nano-composite coated glass were best described by a pseudo first order model and showed an excellect activity in degradation of Reactive Blue 222 with 82% efficiency and 78% TOC removal. The results showed that Fe2O3/Mn2O3/FeMn2O4 nano-composite coated glass is a promising low cost photo-catalyst for the mineralization of Reactive Blue 222 as a diazo textile dye from aquatic environment.


Photocatalytic Activity Manganese Oxide Selective Catalytic Reduction Field Emission Scanning Electron Microscopy Image Composite Alloy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors wish to thank the University of Isfahan for financial support of this work.


  1. 1.
    A. Yeh, Y.A. Soh, J. Brooke, G. Aeppli, T.F. Rosenbaum, S.M. Hayden, Nature 419, 459 (2002)CrossRefGoogle Scholar
  2. 2.
    P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J.M. Tarascon, Nature 407, 496 (2000)CrossRefGoogle Scholar
  3. 3.
    A. Kingon, J.P. Maria, S.K. Streiffer, Nature 406, 1032 (2000)CrossRefGoogle Scholar
  4. 4.
    M.M. Momeni, Y. Ghayeb, J. Mater. Sci. 26, 5509 (2015)Google Scholar
  5. 5.
    M. Hassanpour, H. Safardoust, D. Ghanbari, M. Salavati-Niasar, J. Mater. Sci. 27, 2718 (2016)Google Scholar
  6. 6.
    V. Pazhanivelu, A.P.B. Selvadurai, R. Kannan, R. Murugaraj, J. Mater. Sci. 27, 5549 (2016)Google Scholar
  7. 7.
    S. Vadivel, G. Rajarajan, J. Mater. Sci. 26, 5863 (2015)Google Scholar
  8. 8.
    Y. Ghayeb, M.M. Momeni, J. Mater. Sci. 26, 5335 (2015)Google Scholar
  9. 9.
    M. Zhang, Y. Cao, L. Wang, Y. Ma, X. Tu, Z. Zhang, ACS Appl. Mater. Interfaces 7, 4650 (2015)CrossRefGoogle Scholar
  10. 10.
    M.F. Casula, E. Conca, I. Bakaimi, A. Sathya, M.E. Materia, A. Casu, A. Falqui, D.E. Sogne, T. Pellegrino, G.A. Kanaras, Phys. Chem. Chem. Phys. 18, 16848 (2016)CrossRefGoogle Scholar
  11. 11.
    D. Soni, R. Pal, Electroanalysis 28, 1951 (2016)CrossRefGoogle Scholar
  12. 12.
    Y. Li, Y. Wan, Y. Li, S. Zhan, Q. Guan, Y. Tian, ACS Appl. Mater. Interfaces 8, 5224 (2016)CrossRefGoogle Scholar
  13. 13.
    T.A. Khan, E.A. Khan, A. Shahjahan, Appl. Clay Sci. 107, 70 (2015)CrossRefGoogle Scholar
  14. 14.
    S.N. de Medeiros, A. Luciano, L.F. Co´ tica, I.A. Santosa, A. Paesano Jr., J.B.M. da Cunh, J. Magn. Magn. Mater. 281, 227 (2004)CrossRefGoogle Scholar
  15. 15.
    N. Sakai, T. Horita, Y.P. Xiong, K. Yamaji, H. Kishimoto, M.E. Brito, H. Yokokawa, T. Maruyama, Solid State Ionics 176, 681 (2005)CrossRefGoogle Scholar
  16. 16.
    M. Gratzel, Nature 414, 338 (2001)CrossRefGoogle Scholar
  17. 17.
    S.X. Wu, Q.Y. He, C.M. Zhou, X.Y. Qi, X. Huang, Z.Y. Yin, Y.H. Yang, H. Zhang, Nanoscale 4, 2478 (2012)CrossRefGoogle Scholar
  18. 18.
    K. Sarmah, S. Pratihar, ACS Sustain. Chem. Eng. 5, 310 (2017)CrossRefGoogle Scholar
  19. 19.
    S. Chattopadhyay, G.J. De Saha, J. Mater. Chem. A 2, 19029 (2014)CrossRefGoogle Scholar
  20. 20.
    M. Wang, J. Ioccozia, L. Sun, C. Lin, Z. Lin, Energy Environ. Sci. 7, 2182 (2014)CrossRefGoogle Scholar
  21. 21.
    R. Subramanian, V. Ponnusamy, J. Mater. Sci. 28, 3440 (2017)Google Scholar
  22. 22.
    K. Trabelsi, A. Hajjaji, I. Ka, M. Gaidi, B. Bessais, M.A. El Khakani, J. Mater. Sci. 28, 3317 (2017)Google Scholar
  23. 23.
    Y. Liu, G. Zhu, J. Peng, J. Gao, C. Wang, P. Liu, J. Mater. Sci. 28, 2172 (2017)Google Scholar
  24. 24.
    Y. Ghayeb, M.M. Momeni, J. Mater. Sci. 27, 6305 (2016)Google Scholar
  25. 25.
    K. Gupta, A.K. Ghosh, A. De, S. Banerjee, U.C. Ghosh, J. Nano. Res. 14, 1272 (2012)CrossRefGoogle Scholar
  26. 26.
    S.A. Ahmed, J. Mater. Sci. 52, 4977–4987 (2017)CrossRefGoogle Scholar
  27. 27.
    M. Sharrouf, R. Awad, M. Roumie, S. Marhaba, Mater. Sci. Appl. 6, 850 (2015)Google Scholar
  28. 28.
    M.H. Habibi, M.H. Rahmati, Spectrochim Acta A 137, 160 (2015)CrossRefGoogle Scholar
  29. 29.
    M.H. Habibi, M. Fakhrpor, J. Mater. Sci. 28, 2697 (2017)Google Scholar
  30. 30.
    M.H. Habibi, M. Mardani, Spectrochim Acta A 137, 785 (2015)CrossRefGoogle Scholar
  31. 31.
    M.H. Habibi, P. Bagheri, J. Mater. Sci. 28, 289 (2017)Google Scholar
  32. 32.
    M.H. Habibi, P. Bagheri, J. Mater. Sci. 28, 1522 (2017)Google Scholar
  33. 33.
    R. Han, W. Li, W. Pan, M. Zhu, D. Zhou, F. Li, Sci. Rep. 4, 7493 (2014)CrossRefGoogle Scholar
  34. 34.
    L. Lan, G. Gu, Q. Li, H. Zhang, K. Xu, B. Liu, B. Liu, RSC Adv. 5, 25250 (2015)CrossRefGoogle Scholar
  35. 35.
    S.B. Khan, M.M. Rahman, A.M. Asiri, S. Asif, S. Al-Qarni, Physica E 62, 21 (2014)CrossRefGoogle Scholar
  36. 36.
    S.B. Khan, M.T.S. Chani, K.S. Karimov, A.M. Asiri, R.B.M. Tariq, Talanta 120, 443 (2014)CrossRefGoogle Scholar
  37. 37.
    Z.J. Li, S.F. Wang, B. Li, X. Xiang, J. Nano. Res. 37, 122 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Nanotechnology Laboratory, Department of ChemistryUniversity of IsfahanIsfahanIslamic Republic of Iran

Personalised recommendations