Advertisement

Enhanced photocatalytic activity of europium doped TiO2 under sunlight for the degradation of methyl orange

  • G. V. Khade
  • N. L. Gavade
  • M. B. Suwarnkar
  • M. J. Dhanavade
  • K. D. Sonawane
  • K. M. Garadkar
Article

Abstract

Europium doped TiO2 nanomaterials were prepared by microwave assisted sol–gel method to enhance the photocatalytic activity. This method is eco-friendly and makes it possible for the preparation of low cost photocatalyst. The nanomaterials were characterized thoroughly by various techniques, such as XRD, EDS, FT-IR, FE-SEM, TEM, UV-DRS. The X-ray diffraction of Eu doped TiO2 shows a reduction in crystallite size compared to bare TiO2. The reduction in particle size was also observed from FE-SEM and TEM images. The photocatalytic activity of Eu doped TiO2 was estimated towards degradation of Methyl Orange (MO) under UV and sunlight. The photodegradation efficiencies of MO using Eu–TiO2 (0.025 mol%) and TiO2 observed are 98 and 81% respectively under UV light. An increment of 17% in degradation efficiency was observed due to higher absorption and 4f electron transition of rare earth ions. The effect of operational parameters such as pH of solution and catalyst loading on photodegradation of MO were also examined. Additionally influence of H2O2 on degradation of MO was checked and succeeded for complete degradation of MO within 60 min at optimal conditions under UV light. The antimicrobial testing was also carried out for the synthesized Eu–TiO2 which revealed that it has potential ability to inhibit the growth of Staphylococcus aureus (NCIM-2654) and Escherichia coli (NCIM-2832).

Keywords

TiO2 Photocatalytic Activity Methyl Orange TiO2 Nanoparticles Degradation Efficiency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

One of the authors (KMG) is thankful to DST for providing the DST-FIST program. Authors also thankful to Director SAIF, NEHU Shillong for providing TEM Facility.

References

  1. 1.
    D. Wang, R. Yu, Y. Chen, N. Kumada, N. Kinomura, M. Takano, Solid State Ion. 172, 101 (2004)CrossRefGoogle Scholar
  2. 2.
    K. Ando, Solid State Sci. 128, 211 (2000)Google Scholar
  3. 3.
    M. Shim, C. Wang, D.J. Norris, P. Guyot-Sionnest, MRS Bull. 26, 1005 (2001)CrossRefGoogle Scholar
  4. 4.
    V.N. Golovach, D. Loss, Semicond. Sci. Technol. 17, 355 (2000)CrossRefGoogle Scholar
  5. 5.
    Z. Zou, J. Ye, K. Sayama, H. Arakawa, Nature 414, 625 (2001)CrossRefGoogle Scholar
  6. 6.
    W.C. Chan, S. Nie, Science 281, 2016 (1998)CrossRefGoogle Scholar
  7. 7.
    bib id="bib7"> M. Bruchez, M. Moronne, P. Gin, S. Weiss, A.P. Alivisatos, Science 281, 2013 (1998)</bib </bibCrossRefGoogle Scholar
  8. 8.
    M. Ferrara, V. Guidi, G. Martinelli, G. Faglia, P. Nelli, G. Sberveglieri, Nanostruct. Mater. 7, 709 (1996)CrossRefGoogle Scholar
  9. 9.
    H. Tang, Sens. Actuators B 26, 71 (1995)CrossRefGoogle Scholar
  10. 10.
    D.C. Gilmer, Chem. Vapor. Depos. 4, 9 (1998)CrossRefGoogle Scholar
  11. 11.
    K. Bange, C.R. Otterrnann, O. Anderson, U. Jeschkowski, M. Laube, R. Feile, Thin Solid Films 197, 279 (1991)CrossRefGoogle Scholar
  12. 12.
    Y. Sawada, Y. Taga, Thin Solid Films 116, 155 (1984)CrossRefGoogle Scholar
  13. 13.
    H. Gao, W. Liu, G. Liu, Adv. Mater. Res. 490, 3272 (2012)CrossRefGoogle Scholar
  14. 14.
    C. Wang, B. Xu, X.W. Eang, J. Zhao, J. Solid State Chem. 178, 3500 (2005)CrossRefGoogle Scholar
  15. 15.
    K.V. Gurav, V.J. Fulari, U.M. Patil, C.D. Lokhande, O.S. Joo, Appl. Surf. Sci. 256, 2680 (2010)CrossRefGoogle Scholar
  16. 16.
    X.Y. Chen, Y.S. Liu, W.Q. Luo, R.F. Li, G.K. Liu, M.R. Antonio, J. Phys. Chem. 112, 12646 (2008)Google Scholar
  17. 17.
    U. Ozgur, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Dogan, V. Avrutin, S. Cho, J.H. Morko, J. Appl. Phys. 98, 041301 (2005)CrossRefGoogle Scholar
  18. 18.
    H. Yamashita, M. Harada, J. Misaka, M. Takeuchi, B. Neppolian, M. Anpo, Catal. Today 84, 191 (2003)CrossRefGoogle Scholar
  19. 19.
    D.H. Kim, S.I. Woo, S.H. Moom, H.D. Kim, B.Y. Kim, J.H. Cho, Y.G. Joh, E.C. Kim, Solid State Commun. 136, 554 (2005)CrossRefGoogle Scholar
  20. 20.
    F.B. Li, X.Z. Li, M.F. Hou, K.W. Cheah, W.C.H. Choy, Appl. Catal. A 285, 181 (2005)CrossRefGoogle Scholar
  21. 21.
    Y. Zhang, H. Xu, Y. Xu, H. Zhang, Y. Wang, J. Photochem. Photobiol. A 170, 279 (2005)CrossRefGoogle Scholar
  22. 22.
    X. Yan, J. He, D. Evans, X. Duan, Y. Zhu, Appl. Catal. B Environ. 55, 243 (2005)CrossRefGoogle Scholar
  23. 23.
    Y. Xie, C. Yuan, X. Li, Mater. Sci. Eng. B 117, 325 (2005)CrossRefGoogle Scholar
  24. 24.
    M.K. Reddy, B. Baruwati, M. Jayalakshmi, M.M. Rao, S.V. Manorama, J. Solid Chem. 178, 3352 (2005)CrossRefGoogle Scholar
  25. 25.
    G.V. Khade, M.B. Suwarnkar, N.L. Gavade, K.M. Garadkar, J. Mater. Sci. 27, 6425 (2016)Google Scholar
  26. 26.
    K. Okuyana, C. Panatarani, I.W. Lenggoro, J. Phys. Chem. Solids 65, 1843 (2004)CrossRefGoogle Scholar
  27. 27.
    Y. Xie, C. Yuan, Mater. Res. Bull. 39, 533 (2004)CrossRefGoogle Scholar
  28. 28.
    O. Lupan, T. Pauporte, B. Viana, P. Aschehong, M. Ahmadi, B.R. Cuenya, Appl. Surf. Sci. 282, 782 (2013)CrossRefGoogle Scholar
  29. 29.
    K. Okada, N. Yamamoto, Y. Kameshima, A. Yasumari, J. Am. Ceram. Soc. 84, 1591 (2001)CrossRefGoogle Scholar
  30. 30.
    G. Liu, H.G. Yang, X. Wang, H. Cheng, H. Lu, L. Wang, G.Q. Lu, H.M. Cheng, J. Phys. Chem. 113, 21784 (2009)Google Scholar
  31. 31.
    M. Myilsamy, M. Mahalakshmi, N. Subha, A. Rajabhuvaneswari, V. Murugesan, RSC Adv. 6, 35024 (2016).CrossRefGoogle Scholar
  32. 32.
    J.A. Mary, J.J. Vijaya, M. Bououdina, L. Kennedy, J.H. Dai, Y. Song, Phys. E 66, 209 (2015)CrossRefGoogle Scholar
  33. 33.
    R. Doong, C. Liao, J. Hazard. Mater. 322, 254 (2017)CrossRefGoogle Scholar
  34. 34.
    R. C. Hsiao, N. Sabariarul, D. Mangararaj, R.S. Juang, J. Optoelectron. Adv. Mater. 12, 193 (2010)Google Scholar
  35. 35.
    A.N. Kadam, T.G. Kim, D.S. Shin, K.M. Garadkar, J. Park, J. Alloys. Compd. doi: 10.1016/j.jallcom.2017.03.150
  36. 36.
    G.V. Khade, M.B. Suwarnkar, N.L. Gavade, K.M. Garadkar, J. Mater. Sci. 26, 3309 (2015)Google Scholar
  37. 37.
    J. Kunze, A. Ghicov, H. Hildebrand, J.M. Macok, L. Traveira, P. Schmuki, J. Phys. Chem. 219, 1561 (2005)Google Scholar
  38. 38.
    H.R. Pant, B. Pant, R.K. Sharma, A. Amarjargal, H.J. Kim, C.H. Park, L.D. Tijing, C.S. Kim, Ceram. Int. 39, 1503 (2013)CrossRefGoogle Scholar
  39. 39.
    A.W. Xu, Y. Gao, H.Q. Liu, J. Catal. 207, 151 (2002)CrossRefGoogle Scholar
  40. 40.
    Y.Q. Gao, D.Y. Chen, Z.X. Su, Appl. Catal. A 261, 15 (2004)CrossRefGoogle Scholar
  41. 41.
    N. Serpone, D. Lawless, R. Khairutdinov, J. Phys. Chem. 99, 16646 (1995)CrossRefGoogle Scholar
  42. 42.
    N.L. Gavade, A.N. Kadam, Y.B. Gaikwad, M.J. Dhanavade, K.M. Garadkar, J. Mater. Sci. 27, 11080 (2016)Google Scholar
  43. 43.
    N. Sobana, M. Muruganadhan, M. Swaminathan, J. Mol. Catal. A Chem. 258, 124 (2006)CrossRefGoogle Scholar
  44. 44.
    B. Subash, B. Krishnakumar, B. Sreedhar, M. Swaminathan, M. Shanthi, Super Latt. Microstruct. 54, 155 (2013).CrossRefGoogle Scholar
  45. 45.
    M.B. Suwarnkar, A.N. Kadam, G.V. Khade, N.L. Gavade, K.M. Garadkar, J. Mater. Sci. 27, 843 (2016)Google Scholar
  46. 46.
    S.S. Mandal, A.J. Bhattacharyya, J. Chem. Sci. 124, 969 (2012)CrossRefGoogle Scholar
  47. 47.
    V. Mirkhani, S. Tangestaninejad, M. Moghadam, M. H. Habibi, A. Rostami-Vartooni, J. Iran. Chem. Soc. 6, 578 (2009)CrossRefGoogle Scholar
  48. 48.
    H.M. Coleman, V. Vimonses, G. Leslie, R.J. Amal, J. Hazard. Mater. 146, 496 (2007)CrossRefGoogle Scholar
  49. 49.
    A.M.T. Silva, E. Nouli, N.P. Xekoukoulotakis, D. Mantzavinos, Appl. Catal. B 73, 11 (2007)CrossRefGoogle Scholar
  50. 50.
    L. Andronic, S. Manolache, A. Duta, J. Nanosci. Nanotechnol. 8, 728 (2008)CrossRefGoogle Scholar
  51. 51.
    R. Kamble, S. Sabale, P. Chikode, V. Puri, S. Mahajan, Mater. Res. Expr. 3, 115005 (2016).CrossRefGoogle Scholar
  52. 52.
    W. Ruifen, W. Fuming, A. Shengli, S. Jinling, Z. Yin, J. Rare Earth 33, 154 (2015)CrossRefGoogle Scholar
  53. 53.
    R.C. Hsiao, N. Sabariarul, D. Mangararaj, S.R. Juang, J. Optoelectron. Adv. Mater. 12, 193 (2010)Google Scholar
  54. 54.
    M. Stefan, C. Leostean, O. Pana, D. Toloman, A. Popa, I. Perhaita, M. Senila, O. Marincas, L. Barbu-Tudoran, Appl. Surf. Sci. 390, 248 (2016)CrossRefGoogle Scholar
  55. 55.
    X. Jiang, L. Yang, P. Liu, X. Li, J. Shen, Colloids Surf B Biointerfaces 79, 69 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • G. V. Khade
    • 1
  • N. L. Gavade
    • 1
  • M. B. Suwarnkar
    • 1
  • M. J. Dhanavade
    • 2
  • K. D. Sonawane
    • 2
  • K. M. Garadkar
    • 1
  1. 1.Nanomaterials Research Laboratory, Department of ChemistryShivaji UniversityKolhapurIndia
  2. 2.Department of BiochemistryShivaji UniversityKolhapurIndia

Personalised recommendations