Advertisement

Preparation, characterization, electrical properties and giant dielectric response in (In + Nb) co-doped TiO2 ceramics synthesized by a urea chemical-combustion method

  • Theeranuch Nachaithong
  • Prasit Thongbai
Article
  • 191 Downloads

Abstract

Pure rutile phase of nanocrystalline (In + Nb) co-doped TiO2 (INTO) ceramics were prepared by a chemical combustion method using urea as fuel. Dense ceramic microstructure can be obtained by sintering INTO nanocrystalline powders. Good dispersion of In3+ and Nb5+ co-doping ions in the microstructure is observed. Notably, high dielectric permittivity (≈20,674) and low loss tangent (≈0.054) at a low frequency and 30 °C are achieved in the (In1/2Nb1/2)0.015Ti0.985O2 ceramic. Using an impedance spectroscopy, the INTO ceramics are confirmed to be electrically heterogeneous, consisting of semiconducting and insulating phases. The giant dielectric response in INTO ceramics can suitably be explained by the interfacial polarization. The low value of the loss tangent of INTO ceramics is attributed to a large value of resistivity of insulating phase.

Keywords

CCTO Ceramic High Dielectric Permittivity NbCl5 Spark Plasma Sinter Method Internal Barrier Layer Capacitor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work is supported by the Thailand Research Fund (TRF) under the TRF Senior Research Scholar [Grant Number RTA5680008]. It was partially supported by the Nanotechnology Center (NANOTEC), NSTDA, Ministry of Science and Technology, Thailand, through its program of Center of Excellence Network. T.N. would like to thank the Nanotec-KKU Center of Excellence on Advanced Nanomaterials for Energy Production and Storage for her Master Degree scholarship.

References

  1. 1.
    W. Hu, Y. Liu, R.L. Withers, T.J. Frankcombe, L. Norén, A. Snashall, M. Kitchin, P. Smith, B. Gong, H. Chen, J. Schiemer, F. Brink, J. Wong-Leung, Nat. Mater. 12, 821–826 (2013)CrossRefGoogle Scholar
  2. 2.
    W. Tuichai, S. Danwittayakul, S. Maensiri, P. Thongbai, RSC Adv. 6, 5582–5589 (2016)CrossRefGoogle Scholar
  3. 3.
    A.J. Moulson, J.M. Herbert, Electroceramics : Materials, Properties, Applications, 2nd edn. (Wiley, West Sussex, 2003)CrossRefGoogle Scholar
  4. 4.
    Z. Wang, M. Cao, Q. Zhang, H. Hao, Z. Yao, Z. Wang, Z. Song, Y. Zhang, W. Hu, H. Liu, J. Am. Ceram. Soc. 98, 476–482 (2015)CrossRefGoogle Scholar
  5. 5.
    C. Wang, N. Zhang, Q. Li, Y. Yu, J. Zhang, Y. Li, H. Wang, J. Am. Ceram. Soc. 98, 148–153 (2015)CrossRefGoogle Scholar
  6. 6.
    W. Hu, K. Lau, Y. Liu, R.L. Withers, H. Chen, L. Fu, B. Gong, W. Hutchison, Chem. Mater. 27, 4934–4942 (2015)CrossRefGoogle Scholar
  7. 7.
    Z. Li, J. Wu, W. Wu, J. Mater. Chem. C 3, 9206–9216 (2015)CrossRefGoogle Scholar
  8. 8.
    X. Cheng, Z. Li, J. Wu, J. Mater. Chem. A 3, 5805–5810 (2015)CrossRefGoogle Scholar
  9. 9.
    J. Li, F. Li, Y. Zhuang, L. Jin, L. Wang, X. Wei, Z. Xu, S. Zhang, J. Appl. Phys. 116, 074105 (2014)CrossRefGoogle Scholar
  10. 10.
    G. Liu, H. Fan, J. Xu, Z. Liu, Y. Zhao, RSC Adv. 6, 48708–48714 (2016)CrossRefGoogle Scholar
  11. 11.
    J. Li, Z. Xu, F. Li, X. Zhu, S. Zhang, RSC Adv. 6, 20074–20080 (2016)CrossRefGoogle Scholar
  12. 12.
    Y. Song, X. Wang, X. Zhang, Y. Sui, Y. Zhang, Z. Liu, Z. Lv, Y. Wang, P. Xu, B. Song, J. Mater. Chem. C 4, 6798–6805 (2016)CrossRefGoogle Scholar
  13. 13.
    W. Tuichai, S. Danwittayakul, N. Chanlek, P. Srepusharawoot, P. Thongbai, S. Maensiri, RSC Adv. 7, 95–105 (2017)CrossRefGoogle Scholar
  14. 14.
    B. Shang, P. Liang, F. Li, X. Chao, L. Wei, Z. Yang, J. Alloys Compd. 704, 64–69 (2017)CrossRefGoogle Scholar
  15. 15.
    F. Li, B. Shang, P. Liang, L. Wei, Z. Yang, J. Electron. Mater. 45, 5178–5184 (2016)CrossRefGoogle Scholar
  16. 16.
    J. Li, F. Li, C. Li, G. Yang, Z. Xu, S. Zhang, Sci. Rep. 5, 8295 (2015)CrossRefGoogle Scholar
  17. 17.
    Y. Song, X. Wang, Y. Sui, Z. Liu, Y. Zhang, H. Zhan, B. Song, Z. Liu, Z. Lv, L. Tao, J. Tang, Sci. Rep. 6, 21478 (2016)CrossRefGoogle Scholar
  18. 18.
    W. Tuichai, S. Danwittayakul, N. Chanlek, P. Thongbai, S. Maensiri, J. Alloys Compd. 703, 139–147 (2017)CrossRefGoogle Scholar
  19. 19.
    T. Nachaithong, P. Thongbai, S. Maensiri, J. Eur. Ceram. Soc. 37, 655–660 (2017)CrossRefGoogle Scholar
  20. 20.
    T. Nachaithong, P. Kidkhunthod, P. Thongbai, S. Maensiri, J. Am. Ceram. Soc. (2017). doi: 10.1111/jace.14688
  21. 21.
    W. Tuichai, N. Thongyong, S. Danwittayakul, N. Chanlek, P. Srepusharawoot, P. Thongbai, S. Maensiri, Mater. Des. 123, 15–23 (2017)CrossRefGoogle Scholar
  22. 22.
    H. Han, P. Dufour, S. Mhin, J.H. Ryu, C. Tenailleau, S. Guillemet-Fritsch, Phys. Chem. Chem. Phys. 17, 16864–16875 (2015)CrossRefGoogle Scholar
  23. 23.
    W. Wan, C. Liu, H. Sun, Z. Luo, W.-X. Yuan, H. Wu, T. Qiu, J. Eur. Ceram. Soc. 35, 3529–3534 (2015)CrossRefGoogle Scholar
  24. 24.
    L. Singh, B.C. Sin, I.W. Kim, K.D. Mandal, H. Chung, Y. Lee, J. Varela, J. Am. Ceram. Soc. 99, 27–34 (2016)CrossRefGoogle Scholar
  25. 25.
    J. Li, P. Liang, J. Yi, X. Chao, Z. Yang, J. Am. Ceram. Soc. 98, 795–803 (2015)CrossRefGoogle Scholar
  26. 26.
    X.J. Luo, Y.S. Liu, C.P. Yang, S.S. Chen, S.L. Tang, K. Bärner, J. Eur. Ceram. Soc 35, 2073–2081 (2015)CrossRefGoogle Scholar
  27. 27.
    M.F. Ab Rahman, S.D. Hutagalung, Z.A. Ahmad, M.F. Ain, J.J. Mohamed, J. Mater. Sci. 26, 3947–3956 (2015)Google Scholar
  28. 28.
    A. Nautiyal, C. Autret, C. Honstettre, S. De Almeida-Didry, M. El Amrani, S. Roger, B. Negulescu, A. Ruyter, J. Eur. Ceram. Soc. 36, 1391–1398 (2016)CrossRefGoogle Scholar
  29. 29.
    J. Boonlakhorn, B. Putasaeng, P. Kidkhunthod, P. Thongbai, Mater. Des. 92, 494–498 (2016)CrossRefGoogle Scholar
  30. 30.
    M. Li, D.C. Sinclair, J. Appl. Phys. 114, 034106 (2013)CrossRefGoogle Scholar
  31. 31.
    L. Liu, D. Shi, S. Zheng, Y. Huang, S. Wu, Y. Li, L. Fang, C. Hu, Mater. Chem. Phys. 139, 844–850 (2013)CrossRefGoogle Scholar
  32. 32.
    L. Liu, H. Fan, P. Fang, X. Chen, Mater. Res. Bull. 43, 1800–1807 (2008)CrossRefGoogle Scholar
  33. 33.
    Y. Huang, D. Shi, L. Liu, G. Li, S. Zheng, L. Fang, Appl. Phys. A 114, 891–896 (2014)CrossRefGoogle Scholar
  34. 34.
    X. Sun, J. Deng, S. Liu, T. Yan, B. Peng, W. Jia, Z. Mei, H. Su, L. Fang, L. Liu, Appl. Phys. A 122, 864 (2016)CrossRefGoogle Scholar
  35. 35.
    J. Deng, X. Sun, S. Liu, L. Liu, T. Yan, L. Fang, B. Elouadi, J. Adv. Dielectr. 06, 1650009 (2016)CrossRefGoogle Scholar
  36. 36.
    Y. Huang, D. Shi, Y. Li, G. Li, Q. Wang, L. Liu, L. Fang, J. Mater. Sci. 24, 1994–1999 (2012)Google Scholar
  37. 37.
    L. Liu, H. Fan, L. Wang, X. Chen, P. Fang, Philos. Mag. 88, 537–545 (2008)CrossRefGoogle Scholar
  38. 38.
    L. Liu, L. Fang, Y. Huang, Y. Li, D. Shi, S. Zheng, S. Wu, C. Hu, J. Appl. Phys. 110, 094101 (2011)CrossRefGoogle Scholar
  39. 39.
    P. Thongbai, T. Yamwong, S. Maensiri, J. Appl. Phys. 104, 074109 (2008)CrossRefGoogle Scholar
  40. 40.
    L. Li, Z.W. Wang, X.M. Chen, Mater. Res. Bull. 67, 251–254 (2015)CrossRefGoogle Scholar
  41. 41.
    Y. Li, L. Fang, L. Liu, Y. Huang, C. Hu, Mater. Sci. Eng. B 177, 673–677 (2012)CrossRefGoogle Scholar
  42. 42.
    Y. Song, X. Wang, X. Zhang, X. Qi, Z. Liu, L. Zhang, Y. Zhang, Y. Wang, Y. Sui, B. Song, Appl. Phys. Lett. 109, 142903 (2016)CrossRefGoogle Scholar
  43. 43.
    S. Zheng, D. Shi, L. Liu, G. Li, Q. Wang, L. Fang, B. Elouadi, J. Mater. Sci. 25, 4058–4065 (2014)Google Scholar
  44. 44.
    F. Han, J. Deng, X. Liu, T. Yan, S. Ren, X. Ma, S. Liu, B. Peng, L. Liu, Ceram. Int. 43, 5564–5573 (2017)CrossRefGoogle Scholar
  45. 45.
    R. Löhnert, B. Capraro, S. Barth, H. Bartsch, J. Müller, J. Töpfer, J. Eur. Ceram. Soc. 35, 3043–3049 (2015)CrossRefGoogle Scholar
  46. 46.
    R. Löhnert, H. Bartsch, R. Schmidt, B. Capraro, J. Töpfer, A. Feteira, J. Am. Ceram. Soc. 98, 141–147 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Materials Science and Nanotechnology Program, Faculty of ScienceKhon Kaen UniversityKhon KaenThailand
  2. 2.Nanotec-KKU Center of Excellence on Advanced Nanomaterials for Energy Production and StorageKhon KaenThailand
  3. 3.Department of Physics, Faculty of Science, Integrated Nanotechnology Research Center (INRC)Khon Kaen UniversityKhon KaenThailand

Personalised recommendations