Superparamagnetic behaviour of zinc ferrite obtained by the microwave assisted method

  • B. Hangai
  • E. Borsari
  • E. C. Aguiar
  • F. G. Garcia
  • E. Longo
  • A. Z. Simões


Magnetic ZnFe2O4 nanoparticles with magnetization saturation of 12.1 emu/g were synthesized through hydrothermal microwave method at 140 °C for 32 min. These compound is being tested in magnetic hyperthermia a promising therapeutic cancer treatment, which causes lysis of tumor cells by heating magnetic nanoparticles through an external magnetic field. X-ray diffraction reveals a single-phase ZnFe2O4 nanoparticles with well-defined structure while Raman spectroscopy reveals that at 32 min of soaking time provides the energy crystallization, causing anisotropy in the structural growth at short range causing a certain degree of order in the crystal lattice. Morphology of the powders was investigated by transmission electronic microscopy (HRTEM) which showed particle sizes with 10–25 nm of diameter being an important factor for application in magneto-hyperthermia. Magnetic parameters analyzed by means of a vibrating-sample magnetometer unit showed that these nanoparticles have great potential in magneto-hyperthermia application.


Ferrite ZnFe2O4 Microwave Energy Zinc Ferrite Spinel Ferrite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The financial support of this research project by the Brazilian research funding agency FAPESP (2016/02180-4) is gratefully acknowledged.


  1. 1.
    INCA, Estimativa|2014: incidência de câncer no Brasil (Instituto Nacional de Câncer José Alencar Gomes da Silva. Coordenação-Geral de Prevenção e Vigilância, INCA, Rio de Janeiro, 2014)Google Scholar
  2. 2.
    R.A. Weinberg, The Biology of Cancer CL (Garland Science, New York, 2006)Google Scholar
  3. 3.
    P. Shubik, Vascularization of tumors: a review. J. Cancer Res. Clin. Oncol. 103(3), 211–226 (1982)CrossRefGoogle Scholar
  4. 4.
    E.D. Passos, Síntese e Caracterização de Microesferas Magnéticas para Utilização em Hipertermia (Dissertação (Mestrado em Materiais)—Universidade Federal de Itajubá, Itajubá, 2006)Google Scholar
  5. 5.
    B. Djulbegovíc, C. Livingstone, Decision-Making in Oncology: Evidence-Based Management, 1st edn. (Churchill Livingstone, New York, 1997)Google Scholar
  6. 6.
    J. Overgaard, M. Overgaard, Hyperthermia as an adjuvant to radiotherapy in the treatment of malignant melanoma. Int. J. Hyperth. 3, 483–501 (1987)CrossRefGoogle Scholar
  7. 7.
    S. Klahr, Oxygen radicals and renal diseases. Miner. Electrol. Metab. 23(3), 40–43 (1997)Google Scholar
  8. 8.
    Q.A. Pankhurst, J. Connoly, S.K. Jones, J. Dobson, Applications of magnetic nanoparticles in biomedicine. J. Phys. D 36, 167–181 (2003)CrossRefGoogle Scholar
  9. 9.
    S. Mornet, S. Vasseur, F. Grasset, E. Duguet, Magnetic nanoparticle design for medical diagnosis and therapy. J. Mater. Chem. 14, 2161–2175 (2004)CrossRefGoogle Scholar
  10. 10.
    J.M. IM, H.J. YOU, Y.S. YOON, D.W. SHIN, Synthesis of nano-crystalline Gd0.1Ce0.9O2−x for IT-SOFC by aerosol flame deposition. Ceram. Int. 34(4), 877–881 (2007)CrossRefGoogle Scholar
  11. 11.
    V.F. Castro, J. Celestino, A.A. Queiroz, F.G. Garcia, Propriedades magnéticas e biocompatíveis de nanocompósitos para utilização em magneto-hipertermia. Revista Brasileira de Física Médica 4(1), 79–82 (2010)Google Scholar
  12. 12.
    J.A. Gomes, G.M. Azevedo, J. Depeyrot, J. Mestnik-Filho, G.J. Da Silva, F.A. Tourinho, R. Perzynski, ZnFe2O4 nanoparticles for ferrofluids: a combined XANES and XRD study. J. Magn. Magn. Mater. 323, 1203 (2011)CrossRefGoogle Scholar
  13. 13.
    P.A. Vinosha, L.A. Mely, J.E. Jeronsia et al., Synthesis and properties of spinel ZnFe2O4 nanoparticles by facile co-precipitation route. Optik 134, 99–108, (2017)CrossRefGoogle Scholar
  14. 14.
    Z.Ž. Lazarević, Č. Jovalekić, V.N. Ivanovski et al., Characterization of partially inverse spinel ZnFe2O4 with high saturation magnetization synthesized via soft mechanochemically assisted route. J. Phys. Chem. Solids 75, 869–877 (2014)CrossRefGoogle Scholar
  15. 15.
    C.M. Hurd, Varieties of magnetic order in solids. J. Contemp. Phys. 23(5), 469–493 (1982)CrossRefGoogle Scholar
  16. 16.
    P. Urbanowicz, E. Tomaszewicz, T. Gron et al., Superparamagnetic-like behavior and spin-orbit coupling in (Co,Zn)RE4W3O16 tungstates (RE = Nd, Sm, Eu, Gd, Dy and Ho). J. Phys. Chem. Solids 72, 891–898 (2011)CrossRefGoogle Scholar
  17. 17.
    S. Bedanta, W. Kleemann, Superparamagnetism. J. Phys. D 42(1), 013001, 2008CrossRefGoogle Scholar
  18. 18.
    M. Venkatesan, C.B. Fitzgerald, J.M.D. Coey, Thin films: unexpected magnetism in a dielectric oxide. Nature 7000, 630–630 (2004)CrossRefGoogle Scholar
  19. 19.
    Y.S. Fu, X. Wang, Magnetically separable ZnFe2O4–graphene catalyst and its high photocatalytic performance under visible light irradiation. Ind. Eng. Chem. Res. 50, 7210–7218 (2011)CrossRefGoogle Scholar
  20. 20.
    A. Pradeep, P. Priyadharsini, G. Chandrasekaran, Structural, magnetic and electrical properties of nanocrystalline zinc ferrite. J. Alloy. Compd. 509, 3917–3923 (2011)CrossRefGoogle Scholar
  21. 21.
    M. Azharkhan, High frequency dielectric response and magnetic studies of Zn1–xTbxFe2O4 nanocrystalline ferrites synthesized via micro-emulsion technique. J. Magn. Magn. Mater. 360, 188–192 (2014)CrossRefGoogle Scholar
  22. 22.
    D. Varshney, K. Verma, A. Kumar, Structural and vibrational properties of ZnxMn1–xFe2O4 (x = 0. 0, 0. 25, 0. 50, 0. 75, 1.0) mixed ferrites. Mater. Chem. Phys. 131, 413–419 (2011)CrossRefGoogle Scholar
  23. 23.
    P. Laokul, Characterization and magnetic properties of nanocrystalline CuFe2O4, NiFe2O4, ZnFe2O4 powders prepared by the Aloevera extract solution. Curr. Appl. Phys. 11, 101–108 (2011)CrossRefGoogle Scholar
  24. 24.
    M.M. Rahman, Highly sensitive formaldehyde chemical sensor based on hydrothermally prepared spinel ZnFe2O4 nanorods. Sens. Actuators B 171, 932–937 (2012)CrossRefGoogle Scholar
  25. 25.
    T. Marinca, Structural and magnetic properties of nanocrystalline ZnFe2O4 powder synthesized by reactive ball milling. Optoelectron. Adv. Mater. Rapid Commun. 5(1), 149–152, 2011Google Scholar
  26. 26.
    Z.W. Wang, P. Lazor, S.K. Saxena, G. Artioli, High pressure Raman spectroscopic study of spinel (ZnCr2O4). J. Solid State Chem. 165, 165–170 (2002)CrossRefGoogle Scholar
  27. 27.
    H. Zhang, X. Fu, S. Niu, Q. Xin, Synthesis and luminescent properties of nanosized YVO4: Ln (Ln = Sm, Dy). J. Alloys Compd. 457, 61–65 (2008)CrossRefGoogle Scholar
  28. 28.
    H.S.C. O’neill, Temperature dependence of the cation distribution in zinc ferrite (ZnFe2O4) from powder XRD structural refinements. Eur. J. Mineral. 4, 571–580 (1992)CrossRefGoogle Scholar
  29. 29.
    A.Z. Simões, B.D. Stojanovic, M.A. Ramirez, A.A. Cavalheiro, E. Longo, J.A. Varela, Lanthanum-doped Bi4Ti3O12 prepared by the soft chemical method: Rietveld analysis and piezoelectric properties. Ceram. Int. 34, 257–261 (2008)CrossRefGoogle Scholar
  30. 30.
    Z.V. Gabbasova, M.D. Kuz’min, A.K. Zvezdin, I.S. Dubenko, V.A. Murashov, D.N. Rakov, I.B. Krynetsky, Bi1–xRxFeO3 (R = Rare earth): a family of novel magnetoelectrics. Phys. Lett. A 158, 491–498 (1991)CrossRefGoogle Scholar
  31. 31.
    A.V. Zalesskii, A.A. Frolov, T.A. Khimich, A.A. Bush, Composition-induced transition of spin-modulated structure into a uniform antiferromagnetic state in a Bi1–xLaxFeO3 system studied using 57Fe NMR. Phys. Solid State 45, 134–138 (2003)CrossRefGoogle Scholar
  32. 32.
    D. Lee, M.G. Kim, S. Ryu, H.M. Jang, S.G. Lee, Epitaxially grown La-modified BiFeO3 magnetoferroelectric thin films. Appl. Phys. Lett. 86, 222903–222905 (2005)CrossRefGoogle Scholar
  33. 33.
    J. Li et al., Influence of Mn and Nb dopants on electric properties of chemical-solution-deposited BiFeO3 films. Appl. Phys. Lett. 84, 5261–5263 (2004)CrossRefGoogle Scholar
  34. 34.
    H. Wang, J.J. Zhu, J.M. Zhu, X.H. Liao, S. Xu, T. Ding, Fabrication of porous metal oxides for catalytic applications using templating techniques. Phys. Chem. 4, 3794–3799, 2002Google Scholar
  35. 35.
    G.J. Wilson, A.S. Matijasevich, D.R.G. Mitchell,, J.C. Schulz, G.D. Will, Modification of TiO2 for enhanced surface properties: finite Ostwald ripening by a microwave hydrothermal process. Langmuir 22, 2016–2027 (2006)CrossRefGoogle Scholar
  36. 36.
    D.K. Agrawal, Microwave processing of ceramics. Curr. Opin. Solid State Mater. Sci. 3, 480–486 (1998)CrossRefGoogle Scholar
  37. 37.
    T. Tangcharoen, A. Ruangphanit, W. Pecharapaa, Structural and magnetic properties of nanocrystalline zinc-doped metal ferrites (metal = Ni; Mn; Cu) prepared by sol-gel combustion method. Ceram. Int. 39, 239–243 (2013)CrossRefGoogle Scholar
  38. 38.
    R. Rameshbabu, R. Ramesh, S. Kanagesan, A. Karthigeyan, S. Ponnusamy, Synthesis and study of structural, morphological and magnetic properties of ZnFe2O4 nanoparticles. J. Supercond. Nov. Magn. 27, 1499–1502 (2014)CrossRefGoogle Scholar
  39. 39.
    P.M.P. Swamy, S. Basavaraja, A. Lagashetty, N.S. Rao, R. Nijagunappa, A. Venkataraman, Synthesis and characterization of zinc ferrite nanoparticles obtained by self-propagating low-temperature combustion method. Bull. Mater. Sci. 34(7), 1325–1330 (2011)CrossRefGoogle Scholar
  40. 40.
    E. Shi, C.T. Xia, W.Z. Zhong, B.G. Wang, C.D. Feng, Crystallographic properties of hydrothermal barium titanate crystallites. J. Am. Ceram. Soc. 80, 1567–1572 (1997)CrossRefGoogle Scholar
  41. 41.
    Y.B. Khollam, A.S. Deshpande, A.J. Patil, H.S. Potdar, S.B. Deshpande, S. Date, Microwave-hydrothermal synthesis of equi-axed and submicron-sized BaTiO3 powders. Mater. Chem. Phys. 71, 304–308 (2001)CrossRefGoogle Scholar
  42. 42.
    J. Yoo, The effects of microstructure on Ba1–xSrxTiO3 pyroelectric materials for pyroelectric and bolometer infrared sensors. Ph. D. Thesis, University of Auckland, 1999Google Scholar
  43. 43.
    A.Z. Simões, E.C. Aguiar, A.H.M. Gonzalez, J. Andrés, E. Longo, J.A. Varela, Strain behavior of lanthanum modified BiFeO3 thin films prepared via soft chemical method. J. Appl. Phys. 104, 104115-1–104115-6 (2008)CrossRefGoogle Scholar
  44. 44.
    A. Z. Simões, L.S. Cavalcante, C.S. Riccardi, J.A. Varela, E. Longo, Improvement of fatigue resistance on La modified BiFeO3 thin films. Curr. Appl. Phys. 9, 520–523 (2009)CrossRefGoogle Scholar
  45. 45.
    A.Z. Simões, M.A. Ramírez, C.S. Riccardi, E. Longo, J.A. Varela, Ferroelectric characteristics of SrBi4Ti4O15 thin films grown on Pt/Ti/SiO2/Si substrates by the soft chemical method. Mater. Lett. 60, 2020–2023 (2006)CrossRefGoogle Scholar
  46. 46.
    A.Z. Simões, M.A. Ramírez, C.S. Riccardi, A.H.M. Gonzalez,, E. Longo, J.A. Varela, Synthesis and electrical characterization of CaBi2Nb2O9 thin films deposited on Pt/Ti/SiO2/Si substrates by polymeric precursor method. Mater. Chem. Phys. 98, 203–206 (2006)CrossRefGoogle Scholar
  47. 47.
    A.Z. Simões, A.H.M. Gonzalez,, E.C. Aguiar, C.S. Riccardi, E. Longo, J.A. Varela, Piezoelectric behavior of SrRuO3 buffered lanthanum modified bismuth ferrite thin films grown by chemical method. Appl. Phys. Lett. 93, 142902–142904 (2008)CrossRefGoogle Scholar
  48. 48.
    A.Z. Simões, C.S. Riccardi, L.S. Cavalcante, J.A. Varela, E. Longo, Size effects of polycrystalline lanthanum modified Bi4Ti3O12 thin films. Mater. Res. Bull. 43, 158–167 (2008)CrossRefGoogle Scholar
  49. 49.
    A.Z. Simões, M.A. Ramírez, A.H.M. Gonzalez, C.S. Riccardi, A. Ries, E. Longo, J.A. Varela, Control of retention and fatigue-free characteristics in CaBi4Ti4O15 thin films prepared by chemical method. J. Solid State Chem. 179, 2206–2211, 2006CrossRefGoogle Scholar
  50. 50.
    S.-J.L Kang, Sintering Densification, Grain Growth and Microstructure (Elsevier, Oxford, 2005)Google Scholar
  51. 51.
    M. Godinho, C. Ribeiro, E. Longo, E.R. Leite, Influence of microwave heating on the growth of gadolinium-doped cerium oxide nanorods. Cryst. Growth Des. 8, 384–386 (2008)CrossRefGoogle Scholar
  52. 52.
    J. Geng, Y. Lv, D. Lu, J.-J. Zhu, Sonochemical synthesis of PbWO4 crystals with dendritic, flowery and star-like structures. Nanotechnology 17, 2614–2620 (2006)CrossRefGoogle Scholar
  53. 53.
    B. Hosni, Structure and electro chemical hydrogen storage properties of Ti2Ni alloy synthesized by ball-milling. J. Alloys Compd. 615, 119–125 (2014)CrossRefGoogle Scholar
  54. 54.
    S.D. House, Effect of ball-milling duration and dehydrogenation on the morphology, microstructure and catalyst dispersion in Ni-catalyzed MgH2 hydrogen storage materials, Acta Mater. 86, 55–68 (2015)CrossRefGoogle Scholar
  55. 55.
    R.M. Rahul, Enhanced lithium storage in ZnFe2O4–C nanocomposite produced by allow-energy ball-milling. J. Power Sources 282, 462–470 (2015)CrossRefGoogle Scholar
  56. 56.
    C.V. Santilli, S.H. Pulcinelli, Análise da textura de materiais cerâmicos a partir das isotermas de adsorção de gases. Cerâmica 39(259), 11–16 (1993)Google Scholar
  57. 57.
    O.M. Lemine, Synthesis, structural, magnetic and optical properties of nano-crystalline ZnFe2O4. Phys. B 406, 1989–1994 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • B. Hangai
    • 1
  • E. Borsari
    • 1
  • E. C. Aguiar
    • 4
  • F. G. Garcia
    • 2
  • E. Longo
    • 3
  • A. Z. Simões
    • 1
  1. 1.Faculty of Engineering of GuaratinguetáSão Paulo State University - UNESPGuaratinguetáBrazil
  2. 2.Physics and Chemistry InstituteFederal University of Itajubá - UNIFEIItajubáBrazil
  3. 3.Interdisciplinary Laboratory of Electrochemistry and Ceramics, LIEC - Department of Chemistry Techonology, Chemistry InstituteSão Paulo State University - UNESPAraraquaraBrazil
  4. 4.Mato Grosso do Sul State UniversityCidade Universitária, UEMSDouradosBrazil

Personalised recommendations