La0.5Sm0.5FeO3: a new candidate for magneto-electric coupling at room temperature

  • M. G. A. Ranieri
  • M. Cilense
  • E. C. Aguiar
  • A. Z. Simões
  • M. A. Ponce
  • E. Longo


Samarium substituted lanthanum orthoferrite La0:5Sm0:5FeO3 thin film has been prepared by soft chemical method. A single perovskite phase with orthorhombic crystallographic structure was attained. Magnetic and ferroelectric orderings of the film is observed at room temperature (RT). The magnetization of the sample measured at room temperature increases non-linearly with the increase of magnetic field, which suggests the presence of dipole–dipole/exchange interaction in the sample. The resistivity measured in the temperature range 25–375 °C showed that the film is a semiconducting material with low resistivity. The Cole–Cole model reveals different grain boundaries electrical resistance caused by the equilibrium concentration of oxygen vacancies in orthoferrite and that the addition of samarium results in loss of oxygen during sintering. The ferroelectric behaviour of La0:5Sm0:5FeO3 at RT is also confirmed by its capacitance–voltage (C–V) characteristic suggesting a weak ferroelectric behaviour at room temperature. The variation of dielectric constant as a function of frequency predicts the presence of spontaneous polarization in the sample. The semiconductor electrical behavior of the La0:5Sm0:5FeO3 is mainly composed of tunneling current.


Perovskite Leakage Current Density Schottky Barrier Height LaFeO3 Space Charge Polarization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research project was financially supported by the Brazilian research funding agency FAPESP 2013/07296-2.


  1. 1.
    S.T. Shen, H.S. Weng, Comparative-study of catalytic reduction of nitric-oxide with carbon-monoxide over the La1–xSrxBO3 (B = Mn, Fe, Co, Ni) catalysts. Ind. Eng. 37(7), 2654–2661 (1998)CrossRefGoogle Scholar
  2. 2.
    V.V. Kharton, A.A. Yaremchenko, A.V. Kovalevsky, A.P. Viskup, E.N. Naumovich, P.F. Kerko, Perovskite-type oxides for high-temperature oxygen separation membranes. J. Membr. Sci. 163(2), 307–317 (1999)CrossRefGoogle Scholar
  3. 3.
    P.M. Woodward, Octaedral Tilting in Perovskites I, Geometrical Considerations. Acta Cryst. B 53(1), 32–43 (1997)CrossRefGoogle Scholar
  4. 4.
    M.G.A. Ranieri, M. Cilense, E.C. Aguiar, C.C. Silva, A.Z. Simões, E. Longo, Electrical behavior of chemically grown lanthanum ferrite thin films. Ceramic. Int. 42(2), 2234–2240 (2016)CrossRefGoogle Scholar
  5. 5.
    H Xu, X Hu, L Zhang, Generalized low-temperature synthesis of nanocrystalline rare earth orthoferrites LnFeO3 (Ln = La, Pr, Nd, Sm, Eu, Gd). Cryst. Growth Des. 8(7), 2061–2065 (2008)CrossRefGoogle Scholar
  6. 6.
    S. Acharya, P.K. Chakrabarti, Some interesting observations on the magnetic and electric properties of Al3+ doped lanthanum orthoferrite (La0.5Al0.5FeO3). Solid State Commun. 150(1), 1234–1237 (2010)CrossRefGoogle Scholar
  7. 7.
    E Traversa, S Matsushuma, G. Okada, Y. Sadaoka, Y. Sakai, K. Watanabe, NO2 sensitive LaFeO3, thin films prepared by R.F. Sputtering. Sens. Actuator B 661(1), 24–25 (1995)Google Scholar
  8. 8.
    N.N. Toan, S. Saukko, V. Lantto, Gas sensing with semiconducting perovskite oxide LaFeO3. Physica B 327(2–4), 279–282 (2003)CrossRefGoogle Scholar
  9. 9.
    R. Dogra, A.C. Junqueira, R.N. Saxena, A.W. Carbonari, J. Mestnik-Filho, M. Moralles, Hyperfine interaction measurements in LaCrO3 and LaFeO3 perovskites using perturbed angular correlation spectroscopy. Phys. Rev. B 63(22), 224104 (2001)CrossRefGoogle Scholar
  10. 10.
    A. Scholl, J. Stohr, J. Luning, J.W. Seo, J. Fomperyne, H. Siegwart, J.P. Locquet, F. Nolting, A. Anders, E.E. Fullerton, M.R. Scheinfein, H.A. Padmore, Observation of antiferromagneticdomains in epitaxial thin films. Science 287(1), 1014–1018 (2000)CrossRefGoogle Scholar
  11. 11.
    J. Nogues, I.K. Schuller, Exchange bias. J. Magn. Magn. Mater. 192(2) (1999): 203–232.CrossRefGoogle Scholar
  12. 12.
    Y. Yamada, T. Kusumori, H. Muto, Pinning effect of a LaFeO3 buffer layer on the magnetization of a La1–x Pbx MnO3 layer. Appl. Phys. Lett. 80(8), 1409–1411 (2002)CrossRefGoogle Scholar
  13. 13.
    D.S. Deng, X.F. Jin, Exchange bias in ferromagnetic/compensated antiferromagnetic bilayer. Phys. Rev. B 65(1), 172402–172406 (2002)CrossRefGoogle Scholar
  14. 14.
    S.F. Dann, D.B. Currie, M.T. Weller, M.F. Thomas, A.D. Al-Rawwas, The Effect of oxygen stoichiometry on phase relations and structure in the system La1–xSrxFeO3–δ (0 ≤ x ≤ 1, 0 ≤ δ ≤ 0.5). J. Solid State Chem. 109(1), 134–144 (1994)CrossRefGoogle Scholar
  15. 15.
    I. Hole, T. Tybel, J.K. Grepstad, I. Warnhus, T. Grande, K. Wiik, High temperature transport kinetics in heteroepitaxial LaFeO3 thin films. Solid State Electron. 47(1), 2279–2282 (2003)CrossRefGoogle Scholar
  16. 16.
    N.G. Eror, H.U. Anderson, Polymeric precursor synthesis of ceramic materials, MRS Online Proc. Libr. 73, 571 (1986)Google Scholar
  17. 17.
    S.G. Cho, P.F. Johnson Sr., R.A. Condrate, Thermal decomposition of (Sr,Ti) organic precursor during the Pechini process. J. Mater. Sci. 25(11), 4738–4744 (1990)CrossRefGoogle Scholar
  18. 18.
    R.S. Devan, S.B. Deshpande, B.K. Chougule, J. Phys. D 40(1), 1864–1868 (2007)CrossRefGoogle Scholar
  19. 19.
    M.P. Pechini, Method of preparing lead and alkaline earth titanates and niobates and coating method using the same to form a capacitor. US Pat. No 3 330 697 (1967)Google Scholar
  20. 20.
    D. Liu, M. Wang, Preparation of La1−zSrzCo1-yFeyO3−x thin films, membranes, and coatings on dense and porous substrates. J. Mater. Res. 10(12), 3210–3221 (1995)CrossRefGoogle Scholar
  21. 21.
    M. Okuyama, Y. Hamakawa, Preparation and basic properties of PbTiO3 ferroelectric thin films and their device applications. Ferroelectrics 63(1), 243–252 (1985)CrossRefGoogle Scholar
  22. 22.
    G Biasotto, MGA Ranieri, C.R. Foschini, A.Z. Simões, E. Longo, J.A. Varela, M.A. Zaghete, Gas sensor applications of zinc oxide thin film grown by the polymeric precursor method. Ceram. Int. 40(9), 14991–14996 (2014)CrossRefGoogle Scholar
  23. 23.
    A.Z. Simões, A.H.M. Gonzalez, M.A. Zaghete, J.A. Varela, B.D. Stojanovic, Effects of annealing and viscosity on the surface roughness of PLZT thin films. Thin Solid Film. 384(1), 132–137 (2001)CrossRefGoogle Scholar
  24. 24.
    W.M. Zhu, Z.-H. Ye, Effects of chemical modification on the electrical properties of 0.67BiFeO3–0.33PbTiO3 ferroelectric ceramics. Ceram. Int. 30, 1435 (2004)CrossRefGoogle Scholar
  25. 25.
    M. Seitz, F. Hampton, W. Richmond, Influence of chemisorbed oxygen on the ac electrical behavior of polycrystalline ZnO. Adv. Ceram. 7, 60–70 (1983)Google Scholar
  26. 26.
    M.A. Ponce, C.M. Aldao, M.S. Castro, Effects of previous treatments on the electrical response of SnO2-thick films exposed to a CO atmosphere. Mater. Sci. Eng. B 123, 130–135 (2005)CrossRefGoogle Scholar
  27. 27.
    M.A. Ponce, C.M. Aldao, M.S. Castro, Capacitance and resistance measurements of SnO2 thick-films. J. Mater. Sci. 20, 25–32 (2009)Google Scholar
  28. 28.
    C.R. Crowell, V.L. Rideout, Normalized thermionic-field (T-F) emission in metal-semiconductor (Schottky) barriers. Solid-State Electron. 12, 89–105 (1969)CrossRefGoogle Scholar
  29. 29.
    C.M. Aldao, F.J. Williams, E. Joanni, F. Schipani, M.A. Ponce, Conductivity in SnO2 polycrystalline thick film gas sensors: tunneling electron transport and oxygen diffusion. Sens. Actuators B 193, 428–433 (2014)CrossRefGoogle Scholar
  30. 30.
    D.D. Sarma, N. Shanthi, S.R. Barman, N. Hamada, H. Sawada, K. Terakura, Band theory for ground-state properties and excitation spectra of Perovskite LaMO3 (M = Mn, Fe, Co, Ni). Phys. Rev. Lett. 75(6), 1126–1129 (1995)CrossRefGoogle Scholar
  31. 31.
    N. Fujihira, T. Sei, T. Tsuchiya, Preparation and properties of highly conductive La1−xMxMnO3−y thin film showing magnetic effect from Sol–Gel process. J. Sol–Gel Sci. Technol. 4(2), 135–140 (1995)CrossRefGoogle Scholar
  32. 32.
    M. Losurdo, A. Sacchetti, P. Capezzuto, G. Bruno, L. Armelao, D. Barreca, G. Bottaro, A. Gasparotto, C. Maragno, E. Tondello, Optical and electrical properties of nanostructured LaCoO3 thin films. Appl. Phys. Lett. 87(6), 061909–061911 (2005)CrossRefGoogle Scholar
  33. 33.
    K. Gaur, S.C. Verma, H.B. Lal, Defects and electrical conduction in mixed lanthanum transition metal oxides. J. Mater. Sci. 23(5), 1725–1728 (1988)CrossRefGoogle Scholar
  34. 34.
    M.V. Patrakeev, J.A. Bahteeva, E.B. Mitberg, I.A. Leonidova, V.L. Kozhevnikov, K.R. Poeppelmeier, Electron/hole and ion transport in La1−xSrxFeO3−δ. J. Solid State Chem. 172(1), 219–231 (2003)CrossRefGoogle Scholar
  35. 35.
    C.R. Serrao, A.K. Kundu, S.B. Krupanidhi, UV Waghmare, Rao CNR Biferroic YCrO3, Phys. Rev. B 72(1), 220101(R) (2005)CrossRefGoogle Scholar
  36. 36.
    J. Ross MacDonald ed. Impedance Spectroscopy, Emphasizing Solid Materials and Systems, (Wiley & Sons, New York, 1987)Google Scholar
  37. 37.
    J. Fleig, The influence of non-ideal microstructures on the analysis of grain boundary impedances. Solid State Ionics 131, 117–127 (2000)CrossRefGoogle Scholar
  38. 38.
    H.L. Tuller, Ionic conduction in nanocrystalline materials. Solid State Ionics 131, 143–157 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • M. G. A. Ranieri
    • 1
  • M. Cilense
    • 1
  • E. C. Aguiar
    • 3
  • A. Z. Simões
    • 2
  • M. A. Ponce
    • 4
  • E. Longo
    • 1
  1. 1.Laboratório Interdisciplinar em Cerâmica (LIEC), Departamento de Físico-Química, Instituto de QuímicaUNESPAraraquaraBrazil
  2. 2.Faculdade de Engenharia de GuaratinguetáUniversidade Estadual Paulista- UnespGuaratinguetáBrazil
  3. 3.Universidade Estadual de Mato Grosso do SulDouradosBrazil
  4. 4.Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA) (CONICET-Universidad Nacional de Mar del Plata)Mar del PlataArgentina

Personalised recommendations